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Abstract— We would like to enable a robotic agent to quickly
and intelligently find promising trajectories through structured,
unknown environments. Many approaches to navigation in
unknown environments are limited to considering geometric
information only, which leads to myopic behavior. In this work,
we show that learning a sampling distribution that incorporates
both geometric information and explicit, object-level semantics
for sampling-based planners enables efficient planning at longer
horizons in partially-known environments. We demonstrate that
our learned planner is up to 2.7 times more likely to find a plan
than the baseline, and can result in up to a 16% reduction in
traversal costs as calculated by linear regression. We also show
promising qualitative results on real-world data.

I. INTRODUCTION

We would like to enable intelligent autonomous navigation
in structured, unknown environments. Algorithms that rely
on dense geometric representations to generate motion plans
often result in myopic behavior when deployed in novel,
unknown environments. Consider a robot equipped with a
RGB-D camera, with limited range and field of view. Under
traditional planning paradigms, the robot often must first map
an entire room, before realizing it must be exited via a door.

Object-level semantic information can provide important
contextual cues beyond the range of dense geometric in-
formation to inform more intelligent long-horizon decisions.
Not only do some studies suggest that object-level navigation
is a biologically plausible motion-planning strategy [1], [2],
many object-level elements in the environment can inform
higher-level navigation decisions (i.e., traveling to a door is
the most efficient way of exiting a room). With the advent
of low-cost object detection [3], [4], various object-level
mapping approaches have been proposed [5]–[7], enabling
a renewed investigation of how to leverage object-level
semantic cues for real-world robot navigation.

Despite their intuitive usefulness, object-level maps can be
difficult to integrate within planners designed for unknown
environments. Some approaches to navigation in unknown
environments use generative models to predict unobserved
occupancy information, such as [8], but are strongly coupled
to well designed hierarchical representations for which re-
lationships between objects may be hard to specify. Other
approaches intelligently factor the environment into fron-
tiers [9], but while doors are frontiers between rooms and
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Fig. 1: In this work, we combine geometric (c) and object-level (d)
representations built from depth images (a) and object detections
(b) to predict sampling distributions for sampling-based motion
planners (e). Myopically assuming that unknown space is always
traversable results in trajectories such as the blue path. Our learned
sampling distribution can be used to leverage contextual cues such
as the existence of a door to exit the room and to generate paths
similar to the green path.

hallways, not all objects should be navigation waypoints
– exit signs are objects that provide information about
nearby doors, and windows indicate the extents of buildings.
Furthermore, the utility of object relationships can be a com-
plex function that may change conditioned on the ultimate
objective. For example, the usefulness of a door with an exit
sign is determined by whether the goal is outdoors.

Modern sampling-based motion planners (SBMPs) such
as the RRT* [10], PRM [11], etc., reduce computational
intractability, but are generally optimized for dense geometry
in fully known environments. While it has been shown that
the efficiency of SBMPs can be dramatically improved by
intelligent sampling strategies [12]–[14], the development
of efficient sampling algorithms to speed up planning has
largely focused on dense geometry. Examples include ex-
ploiting geometric properties of the current best solution
[15], and learning sampling distributions using variational
autoencoders [16], [17]. Furthermore, state of the art sam-
pling algorithms tend to focus on improving planning speed
or safety [18], but generally do not consider planning perfor-
mance in unknown environments, where planners often only
have access to incomplete geometric information. Although
approaches such as [19] implicitly incorporate semantics into
geometric representations, they do not reason over explicit
object-level maps, which can potentially be useful for making
intelligent decisions at a longer range.

In this work, we combine the computational power of
randomized motion planners with higher-level semantic in-
formation via a learned sampling distribution, enabling in-
telligent navigation in structured, unknown environments.



We propose optimizing a predictive sampling distribution
inferred from dense geometric representations that track
unobserved space, explicit object-level contextual cues both
within and beyond the range of dense geometry, and infor-
mation about the goal. This enables SBMPs to not only find
plans quickly, but in certain environments also reason about
which plans are most likely to reach the goal despite in-
complete geometric information. Rather than pre-specifying
navigation rules and heuristics over our representations, we
show that a Convolutional Neural Network (CNN) can be
leveraged to synthesize multimodal map information into a
proper sampling distribution, and that learning a sampling
distribution over geometric and semantic information im-
proves navigation results in unknown environments.

II. LEARNED SAMPLING DISTRIBUTIONS

In this section, we first review the definition of a planning
problem, then re-formulate the problem in the context of
learning a maximum-likelihood sampling distribution in-
formed by multimodal information. Finally, we describe how
to generate training data and the structure of the model.

A. Optimal Planning in Unknown Environments

The goal of motion planning is to find a feasible trajectory
from an initial state to a terminal state. Let X ∈ Rd denote
the state space of the robot, where d is the cardinality of
the state. It is also commonly assumed that X is composed
of occupied and unoccupied states, Xfree and Xocc, and that
there exists a known mapping from every X to its occupancy
value, f : X → {Xfree,Xocc}. In practice, when occupancy
information is unavailable, the state is often assumed to be in
Xfree. By denoting a trajectory to be a continuous mapping
through X , i.e., s : [0, 1] → Rd, and a start and goal
xs, xg ∈ X , the planning problem can be formally stated
as the minimization of some scalar cost function c(s) ∈ R
subject to constraints:

s∗ = arg min
s

c(s)

s.t. s∗(t) ∈ Xfree ∀t ∈ [0, 1]

s∗(0) = xs, s
∗(1) = xg.

(1)

Sampling-based motion planners solve this optimization
problem by extracting random graphs [15] to approximate
a solution to Equation 1. Graphs are generated by sam-
pling states x ∈ X from a sampling distribution P (x; Γ),
where Γ are optional additional inputs to the distribution,
then constructing a navigation graph G from valid states,
where G = {V,E}, V = {v0, v1, ...vn : v ∼ P (x; Γ)},
E = {e0, e1, ...em}, and V,E ∈ Xfree. For notational
convenience, we will also interchangeably express an edge
as eij to represent the directed edge from vi to vj . In this
representation, the n vertices of the graph correspond to the
sampled states, and the m edges represent feasible traversals
from one state to another1. A valid trajectory T is a directed,

1We observe that the vertex connection strategy varies between different
algorithms, but neglect the notation here for readability.

connected, acyclic sub-graph of Gt. The optimization in
Equation 1 can then be formulated as:

T ∗ = arg min
T

C(T )

s.t. T ∗ = {V ∗, E∗}, b(e0) = xs, t(em) = xg,

v 6= v′ ∀v, v′ ∈ V ∗

t(ei) = b(ei+1) ∀i ∈ {1...m− 1}
V ∗ ∈ V,E∗ ∈ E,

(2)

where C(T ) ∈ R is a scalar cost function that evaluates the
cost of a sub-graph, t(e) indicates the terminal node of edge
e, b(e) indicates the start node of edge e, and V,E ∈ Xfree.

Intuitively, a good choice of P (x; Γ) is one more likely
to sample Gs that contain T s that are close to the solution
to Equation 2. A common approach is to leverage a fully
observed occupancy map and the geometric location of the
goal (M∗g and xg) as conditioning parameters, Γ = {M∗g , xg}
[12], [19], [20]. However, this choice of parameterization
is often limiting in real-world environments, where sensor
limitations mean that geometric models are almost certainly
inaccurate and incomplete. Assuming maps are complete is
particularly detrimental when traditional methods rely on
complete geometric information to eliminate low-cost but
ultimately infeasible paths by searching only in the space
of valid trajectories (i.e. {T | ∀e ∈ T , e ∈ Xfree}).

B. Multimodal Information for Navigation

In this work, we propose a novel approach to navigation
in unknown environments, which learns a sampling strategy
from both geometric and non-geometric navigational cues.
Specifically, we would like to take advantage of sparse,
metrically correlated object-level maps, which can provide
semantic information both within and beyond the partial
dense geometric map, to inform planning. By learning a pre-
dictive sampling distribution inferred from information about
unknown space, low-level geometry, and explicit object-level
contextual cues such as doorway and exit signs, we can
empower SBMPs to reason about the pertinent structure of
environments that have only been partially observed and
therefore find better plans. For example, instead of having
to densely map the walls of a room in order to exit it, the
presence of a door is a clear semantic cue for a navigation
strategy that has high probability of success (see Figure 1).
Formally, we let Γ = {M, C}, where M denotes a hybrid
form of map representation that incorporates low-level ge-
ometric information with semantic, object-level information
(both of which may be incomplete). The semantic map is
generated by projecting object-level maps onto a grid, where
grid cell values indicate an object’s class. C denotes planning
context parameters, such as the goal location and whether
the goal is indoors or outdoor. We solve Equation 2 over the
graph sampled from P (x; {M, C}).

However, even with an optimized sampling distribution,
we observe that simply being more likely to place samples
along the optimal path does not encourage more likely
trajectories to be chosen if the objective function of the
graph search is not also informed by the information in the



Fig. 2: Neural network used to generate learned sampling distri-
butions. The network uses geometric and semantic information to
learn general and task specific sampling distributions that empower
a robot to reason about navigational modes in unknown space.
Layer data indicates, in order, layer size, convolution size, stride
size, and number of filters. Dropouts are not pictured but used for
regularization. The context information is a vector with the first two
values proportional the relative location of the goal, and a scaled
indicator variable indicating whether the goal is inside or outside.

hybrid map. It is easy to see that in the limit of infinite
samples, an objective function that utilizes distance only
would revert back to the myopic behavior of SBMPs using
uniform sampling when operating in unknown environments.
To mitigate this, we propose using the probability function
not only to define the implicit planning graph, but also as a
cost function over graph edges:

C(T ) ∝ −log(P((T )). (3)

C. Learning Sampling Distributions

In general, determining the form of P (x; {M, C}) analyt-
ically is intractable. Instead, we would like to approximate
the distribution with some mapping φ that depends on the
hybrid map representation and the contextual information:

P (T ∗;Mi, Ci) ≈ φ(T ∗, α;Mi, Ci). (4)

where α denotes the parameters of the predictive sampling
distribution model. A naive approach to the optimization of
φ is to assume a dataset of optimal sampling distributions
P ∗(T ∗), then attempt to minimize some distance metric be-
tween P ∗(T ∗) and φ(T ∗, α;Mi, Ci). In practice, specifying
P ∗(T ∗) is difficult, especially because such a distribution
must account for the existence of multiple optimal trajecto-
ries that may exist in a complex environment.

While it is difficult to obtain example ground-truth sam-
pling distributions, obtaining a representative dataset D
of q example trajectories along with partial, hybrid envi-
ronmental information and context information such that
D = {(T0,M0, C0), (T1,M1, C1), ..., (Tq,Mq, Cq)} is a far
more tractable endeavor. Therefore, we propose learning a
mapping for the sampling distribution by maximizing the
probability that an optimal trajectory T ∗ will be sampled
given Mi and Ci, over the training dataset:

arg min
α

q∑
i

−logP (T ∗, α;Mi, Ci), (5)

where the maximum likelihood optimization has been con-
verted into a negative log-likelihood minimization. The
dataset D may be obtained offline in simulation, or in a
gradual online fashion running any traditional planner that
eventually finds optimal plans.

However, learning a joint distribution over V and E is
extremely difficult due to the exponential state space of all
possible sampled graphs. We therefore approximate Equation
5 as the joint distribution over nodes only:

arg min
α

q∑
i

−logP (Vi, α;Mi, Ci). (6)

Equation 6 abstracts trajectories into collections of nodes,
rather than edges, and is similar to the approach taken
in [16]. For computational tractability, we make a final
approximation that the vertices in the sampled trajectory are
conditionally independent:

arg min
α

q∑
i

−log(

|Ti|∏
j=0

P (vij , α;Mi, Ci)). (7)

Finally, we substitute in our learned approximation φ for P :

arg min
α

q∑
i

(

|Ti|∑
j=0

−logφ(vij , α;Mi, Ci)). (8)

In practice, we optimize a scaled version of Equation 8 for
numerical stability.

D. Neural Network Model Structure and Optimization

In this work, a convolutional neural network serves as
the base form of model φ, and the optimization over α in
Equation 8 is the optimization of the network weights. CNNs
are particularly attractive due to their demonstrated successes
in feature extraction, especially for multi-modal data inputs
[21]. We exploit the modeling power of stacked convolutional
layers to form our hybrid representation, i.e.,M = [Mg;Ms]
such that M ∈ Rk×k×2, where Mg ∈ Rk×k is a local
pixel-wise map with occupancy information, Ms ∈ Rk×k
is a discretized local semantic information map, and the two
maps are concatenated together before being passed to the
encoding CNN φenc, whose output is then decoded via φdec

to form a general un-normalized distribution φgen:

φgen(xd;α{dec,enc},M) = φdec(φenc(xd;αenc,M);αdec),
(9)

where k ∈ Z>0, xd ∈ Xd, Xd is a discretized form of
X , and αdec, αenc denote the network weights for their
respective networks. To incorporate contextual information
with map-level information, we concatenate the output of
the encoding CNN with C, and pass the new matrix through
a second decoding φcs that modifies the general distribution
from Equation 9 to form an unnormalized context-specific
distribution φP , i.e.,

φP (xd;α{dec,enc,cs},M, C) =

φgen(xd;α{dec,enc},M)◦φcs(φenc(xd;αenc,M), C;αcs),
(10)



Fig. 3: Overview of model used to learn sampling distribution. Learned distributions are plotted as filled contour plots (blue is high
probability, grey-green is low probability) overlaid on occupancy maps. In the first half of the network, local occupancy (a) and semantic
(b) maps are passed through a CNN that learns a latent representation (c) and a context-agnostic distribution (d). A second network takes
the latent layer (c) and contextual information (e) to learn a context-specific modifier, which is multiplied against the general distribution
to obtain a context-dependent distribution (f). The rightmost box shows the effect of different contextual inputs to the second network.
Without contextual information, the distribution learns only general navigation heuristics. After adding contextual information about the
goal, the network learns different navigation strategies. For example, when the goal is to the right and inside, the exit sign has low
probability (g), but when the goal is to the left and outside, the exit sign has higher probability, biasing the planner to exit the building
(j). The learned distribution is able to place probability near the exit sign, despite not having densely mapped the region.

where the context variable includes the relative location of
the goal and a flag indicating whether the goal is indoors
or outdoors, such that C ∈ Rd+1. To enforce a proper
probability distribution P , we pass the raw output of the net-
work through a softmax layer to obtain the final normalized
distribution:

φ(xd;α{dec,enc,cs},M, C) =

softmax(φP (xd;α{dec,enc,cs},M, C)). (11)

We propose a two-stage optimization that learns two types
of navigational modes separately. In the first stage, we opti-
mize αenc and αdec and learn a task-independent sampling
distribution that highlights general navigation modes of the
environment. In the second stage, we freeze the network
weights associated with general navigation modes to avoid
task-specific overfitting, and learn a task-specific modifier of
the original distribution that takes into account the context
associated with a specific task (i.e., optimize αcs). See Figure
2 for network details, and Figure 3 for qualitative outputs.
The network optimizes Equation 11 via back-propagation
and stochastic gradient descent (SGD) with mini-batches.

E. Online Planning in Unknown Environments

To use the learned distribution online, we first optimize
Equation 8 offline by applying SGD to the structure in
Equation 11. During each timestep of online use, we generate
incomplete local geometric and semantic maps, then run
feed-forward prediction on our pre-trained model to recover a
normalized probability distribution over the current, partially
known map. Grid locations outside of the local sliding
window are set to the minimum probability of the predicted
window, and the sampling distribution over the entire map
is again re-normalized. In practice, we sample from the

discretized state for efficiency, but observe that uniform sub-
sampling within the discretization could extend this approach
to more complex systems. Finally, we use a Probabilistic
Roadmap (PRM) to generate a trajectory from the current
robot position to the goal, but modify the planner to sample
graph vertices from the learned distribution and to score
graph edges using the objective defined in Equation 3.

III. EXPERIMENTS

In this section, we describe the experimental procedure
used to benchmark our learned sampling distribution against
a uniform sampling distribution in simulated floorplan en-
vironments, and report aggregate metrics. Finally, we show
qualitative results on data collected by a real-world vehicle.

A. Experimental Setup

We first demonstrated our approach in simulation using
real-world floorplan data from MIT [22], which included
floorplans from 13 buildings, split into 10 train buildings and
3 test buildings. The data was used to generate discretized
occupancy and semantic maps, where door locations were
provided by the dataset; plausible windows and exit signs
were manually annotated. We assumed a holonomic vehicle
with a planar depth sensor with an 85.2 degree field of view
and 5 meter range and a RGB vision system with a 69.4
degree field of view capable of observing objects from 10
meters away, with no sensor or pose estimate noise.

B. Dataset Generation

We generated 1500 navigation tasks in known maps,
categorized by indoor or outdoor start and goal locations,
omitting outdoor only tasks due to the lack of semantic
information outdoors in our environments. We simulated
a robot completing each navigation task using a modified



Dataset II II II II IO IO IO IO
N 100 500 1000 5000 100 500 1000 5000
C̄ 0.84 0.95 0.92 0.90 0.95 1.11 1.01 0.99
||D|| 1500 1162 1016 783 1500 550 705 595
||Dm|| 642 819 787 669 140 132 229 215
R2 Score 0.81 0.87 0.77 0.82 0.67 0.34 0.63 0.59
Cl/C

∗ 1.21
±0.01

1.24
±0.01

1.31
±0.02

1.42
±0.03

1.22
±0.03

1.73
±0.16

1.75
±0.09

2.41
±0.09

Cb/C
∗ 1.40

±0.02
1.32
±0.01

1.38
±0.02

1.51
±0.03

1.24
±0.02

1.51
±0.06

1.69
±0.07

2.35
±0.08

TABLE I: A comparison of plan costs between the learned sampling
disribution and baseline planners when both planners succeed,
broken out by dataset and planner iterations per query (N ), which
is correlated to the number of samples drawn per step. ||D|| and
||Dm|| are the total number of trials run and the number of trials
where both planners succeeded. ||D|| varies over N due to the time
involved in running longer trials. C̄ and R2 score are the slope
and fit score of a linear regression with zero intercept. Cl/C∗ and
Cb/C∗ are the mean and standard error of the mean of the trajectory
cost divided by the resolution-optimal trajectory cost for learned
and baseline respectively. In the II dataset, the learned sampling
distribution finds lower cost plans than the baseline, indicating that
using the learned sampling distribution with our chosen SBMP
results in better navigation outcomes.

open source implementation of PRM [23] and a Euclidean
objective function without a priori map information.

At each timestep, the robot generated and executed a plan,
uncovering geometric and semantic information. We assumed
that both maps were well approximated by raycasting in
known maps according to the sensor characteristics. To gen-
erate diverse expert trajectories, at random intervals during
the task we randomly selected a new goal location and solved
for a dense, resolution optimal path to the goal location using
a graph-based search over the ground-truth occupancy map
with soft costs2. We then extracted body-centered local maps
of 160x160 pixels (i.e., Mg,Ms) and labelled them with the
points in the example trajectory. This dataset is then used to
train the model in Equation 8. To examine the utility of our
approach under different contexts, we create two evaluation
datasets, the first where the robot begins indoors, and is
told that the goal is also inside (Inside-Inside, or II), and
another where the robot begins indoors, and is informed that
the goal is outdoors (Inside-Outside, or IO). An evaluation
dataset where the robot begins outdoors is not included, as
our floorplans lack outdoor semantic information.

C. Simulation Evaluation Results

To evaluate our approach, we simulated a robot completing
online navigation tasks in unknown environments using a
modified version of PRM [23] with our learned sampling
distribution and cost function. We compared PRM using our
learned sampling distribution (PRM + LSD) to a baseline
approach using a uniform sampling distribution (PRM +
Unf ) on a test set comprised of random start and goal
locations over three unseen floorplans. Initial yaws were
randomly generated per trial. PRM + LSD used an integral
approximation of the negative log probability of the learned
sampling distribution along each edge as a search objective.

2In practice, expert trajectories may be generated in many ways. We
have assumed that these paths approximate optimal sub-graphs and can be
represented as a set of edges and vertices.

Fig. 4: Selected scatter plots of distance travelled in simulation
units for PRM + LSD vs. PRM + Unf (blue circles) and the slope
calculated by linear regression (red line) for various test conditions,
where N is as in Table I. The dotted line is plotted as a reference
for equal cost.

Fig. 5: A comparison of plan success rates between the learned
(PRM + LSD, shown in red) and baseline (PRM + Unf, shown in
black) planners, where N is as in Table I. The learned sampling
distribution finds plans more frequently than the baseline, demon-
strating that our learned sampling measure empowers PRM to find
plans more quickly. We observe that the limitations placed on the
timesteps per trial may inhibit the convergence of the harder IO test
set. A small percentage (< 2%) of trials were marked as failures
due to the vehicle coming into collision with the environment; these
trials were removed when calculating success statistics.

PRM + Unf used a Euclidean search objective. We varied the
maximum number of samples the respective planners were
allowed to draw to generate a roadmap, and simulated trials
for start and goal locations for which feasible trajectories
existed. If no trajectory was found at a given timestep, or the
simulation of a trial exceeded 10,000 timesteps, the entire
trial was marked as a failure. Figure 3 shows qualitative
results for the distribution trained without context, as well
as the distribution after multiplication with various context-
specific modifiers. The results demonstrate the utility of
adding the semantic context of the goal. In the example
shown, whether the exit sign is an area of high probability
is related to goal being located inside or outside.

Plans generated by the learned sampling distribution and
baseline are compared in Fig. 5, demonstrating that PRM
+ LSD was more likely to find feasible plans than PRM
+ Unf. We note that the learned distribution outperformed
the baseline most notably at low sample counts, indicating
that our method is especially useful for resource-constrained
platforms. While the learned distribution was more suc-
cessful in both test sets for all N , we observe the most
significant improvements in the IO test set. For example,
for the N = 500 case, PRM + Unf had a success rate of
25%, while PRM + LSD had a success rate of 69%.

We also demonstrate that our approach enables efficient
navigation in certain domains. A comparison of plan costs is
shown in Table I; Figure 4 includes scatter plots of trajectory
costs for a selection of scenarios. For the II test set, we
demonstrated between a 5% and 16% decrease in plan cost
(determined by linear regression) when using the learned
sampling distribution. In the IO test set, we generally demon-



Fig. 6: Example intermediate and final trajectories of the baseline and our method. In the left image, we show the sampling distribution
overlaid on the robot’s most recent occupancy map (darker blue is higher probability). The goal is set to the top right corner of the map,
and the learned sampling distribution is also given the context that the goal is outdoors. Unlike the baseline (e)-(h), which uses only a
Euclidean distance metric and greedily explores more rooms in the hopes of reaching the goal, the learned distribution largely encourages
the planner to follow the hallway (a)-(d). Without the contextual information implicit in the learned sampling distribution, the baseline
travels a much longer distance to reach the goal (i). In (i)-(k), we show the final trajectories of the learned (green) and baseline (blue)
traversing from start (red cross) to goal (red circle). In (j), the baseline fails while trying to exit a room, but the learned largely remains
in hallways and reaches the goal. In (k), both the learned and baseline mistakenly enter rooms prior to reaching the goal.

strated no statistically significant differences in plan cost for
the two planners. In Figure 6-(a-i), we show a representative
example where the learned planner outperforms the baseline
planner. The baseline planner greedily explores many rooms,
while the learned planner places probability in the hallways
and exit doors and navigates directly to the goal. In Figure 6-
(j), we show an experimental trial where the learned planner
finds a near optimal plan and the baseline fails; we note
that this trial, while clearly demonstrating the ability of
the learned planner to find low cost trajectories, is not a
mutually successful trial and therefore is not included in
the aggregate statistics. In cases such as 6-(k), a suboptimal
learned distribution causes PRM + LSD to suffer from failure
modes similar to those of PRM + Unf, which leads to inef-
ficient trajectories. Overall, we demonstrate that our learned
sampling distribution significantly improves the success rate
of PRM, and decreases plan costs over the II test set.

D. Real-World Evaluation Results

To evaluate the performance of a SBMP paired with
the learned sampling distribution on real-world data, we
qualitatively compare the planning performance of PRM +
LSD and PRM + Unf on the same dataset. The dataset was
collected by a 1/10th scale racecar platform, carrying the
Intel T265 and D435i modules (which provide state estimates
and RGB-D images, respectively) and an Intel Nuc i7. Dense
geometric maps were generated using a standard geometric
estimation and mapping stack [24]. An object detector based
on SSD-Mobilenet [3], [25], [26] was fine tuned to detect
doors and windows with data from the OpenImages dataset
[27], and an exit sign detector was written using HSV
filtering. Object-level maps were generated by approximately
projecting the output of an object mapping system [5] onto a

Fig. 7: Sensor data and plans at similar points on the same real-
world dataset. RGB images show the object detections (green) and
the estimated volume of objects projected into the image plane
(red). PRM + LSD generally plans to go down the middle of the
hallway, while PRM + Unf greedily attempts to go through an
unseen wall. In this case, the learned distribution empowers the
PRM to plan outside of the known geometric map by generally
guiding the agent down the middle of the hallway, despite the noisy
occupancy and object-level maps. All images are approximately
aligned. Additional experimental results are available at https:
//groups.csail.mit.edu/rrg/lsm.

plane. Figure 7 shows qualitative results from the experiment,
demonstrating the utility of the learned sampling distribution.

IV. CONCLUSION

We have presented a novel method for extending sampling-
based motion planners into unknown environments by learn-
ing a sampling distribution. We demonstrate that sampling
from the learned distribution in addition to utilizing the
learned distribution as a cost function in a SBMP results
in significantly higher success rates and can lower traversal
costs in some domains. We have shown that learning a
sampling distribution using object-level semantic information
and geometric maps can enable long-horizon navigation
in unknown environments, outperforming baseline, uniform
sampling strategies. Finally, we have presented promising
qualitative results on a real-world data.

https://groups.csail.mit.edu/rrg/lsm
https://groups.csail.mit.edu/rrg/lsm
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