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Abstract— We would like to enable a robot to navigate
efficiently and robustly in known, structured environments that
are large enough to cause traditional planning approaches to
incur considerable computational cost. Hierarchical planners
are a promising way to increase planning efficiency in such
environments because high-level abstract plans can be used to
reduce the size of the search space over which detailed planning
occurs. However, useful high-level representations of planning
problems can be challenging to generate without prior domain
knowledge. In this work, we propose a high-level planning repre-
sentation which can be learned from previous plans considered
in the environment and used online during hierarchical, multi-
query robot navigation. We treat previous planning results as
noisy measurements of high-level navigation properties, then
update these properties over time using recursive estimation.
We test our approach in standard and risk-aware hierarchical
planning schemes, and demonstrate up to an 86% decrease in
the number of nodes expanded and a 66% decrease in wallclock
time as compared to a baseline A* planner while finding plans
that are only 2-10% more expensive.

I. INTRODUCTION

We would like to enable a robot to navigate efficiently and
robustly in large, structured environments. Discrete navigation
approaches, such as planners that run the A* algorithm over
a fixed-size occupancy grid [1], can be inefficient in large
environments due to the curse of scale, or the exponential
relationship between plan length and planning complexity in
discrete environments. Variants of the A* algorithm can use
heuristics based on local environmental geometry to improve
planning performance, but are often tuned to specific types of
environmental structure [2]. Sampling-based motion planners
[3]–[5] are efficient in large environments when naive sam-
pling strategies generate random graphs that are representative
of the set of possible traversals in the environment. However,
these approaches can struggle to generate connected graphs in
structured environments without employing problem-specific
sampling strategies [6]–[9], which can be challenging to
specify. Multi-query planners reduce computational cost
across multiple planning trials by precomputing, recording
and reusing planning artifacts during online planning, but are
mainly focused on minimizing duplicate computations locally
and do not fundamentally reduce the dimensionality of the
planning problem or enable enhanced reasoning about the
global quality of candidate plans [10], [11].
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Fig. 1: Online High-Level Function Estimation for Efficient
Hierarchical Robot Navigation. Rather than planning at a single
fine resolution (a), we present an approach which estimates high-
level navigation properties (b) online, using only previous planning
computations, to find high-level plans (c) in a coarse representation
of the planning problem. Then, we use high-level plans to constrain
planning in the fine resolution planning problem (d). We demonstrate
that our approach increases planner efficiency while ensuring planner
robustness over the course of multiple queries to the planner.

Hierarchical planners can minimize the curse of scale by
generating coarse representations of the planning problem
whose solutions can be used to guide a detailed planner to
regions of the environment that are likely to contain low-
cost detailed solutions. However, coarse planning is only
useful if the coarse planning problem efficiently captures
properties of the environment necessary to inform intelligent
detailed planning. Some approaches use geometry-based
decompositions of the environment, such as convex regions
[12], to generate abstract representations of the planning
problem which are guaranteed to accurately summarize
all possible detailed plans in the environment, but these
approaches can be overly restrictive when geometry (e.g., the
set of convex regions) is poorly aligned with the geometric
features of the environment needed to compute a feasible
motion plan efficiently. Other approaches use techniques
such as wavelet decompositions [13] or the information
bottleneck [14] to compress known cost maps for multi-
resolution planning, but do not explicitly capture the structure
of the paths agents use when traversing in the environment.
Recently, some approaches have turned to learning to generate
coarse representations of planning problems based on offline
datasets of primitive plans and additional environmental cues,
such as semantically segmented overhead images [15] or



height maps [16]; however, such additional environmental
cues can be challenging to acquire in real-world environments.

While existing hierarchical planners can plan efficiently
using static, coarse representations that are high quality and
a good approximation of select environments, these planners
still fail to capture the often lossy nature of plan abstraction for
planning in complex environments. Risk-aware planning is a
well studied technique that has been used to improve planning
performance when the model of a planning problem is known
to be incomplete or noisy, such as risk-aware planning over
probabilistic cost maps [17], which enables planners to trade
off between planning efficiency and expected plan quality in
a principled manner. Similar approaches have been extended
to the online setting, where dynamically discovered plan
costs influence future risk-based planning decisions [18]. We
hypothesize that explicitly representing the uncertainty in
coarse or hierarchical representations can enable efficient,
robust planning, even when the coarse representation is not
initially well aligned with the true costs of plans in the
underlying detailed planning environment.

The act of recovering a coarse planning representation from
previous experience has been studied in the reinforcement
learning community as the macro-action learning problem.
However, in most approaches, such as [19], experience from
online executions is used to learn a model-free representation
of the environment via a Q function. In this work, we
formulate macro-action discovery for navigation as a model-
based estimation problem which uses previous planning
computations, not past plan executions, to update a coarse
representation of the planning problem.

In this work, we propose a hierarchical planning represen-
tation which updates properties of a coarse representation
using planning results generated in a detailed representation
of the planning problem, and which can be used during
uncertainty-aware hierarchical multi-query robot navigation.
We select a simple environmental decomposition to generate
a coarse planning representation, then recognize that previ-
ous planning results in the environment can be treated as
noisy measurements of coarse navigation properties. We use
the measurements to improve estimates of the navigation
properties over time. We test our approach in standard and
risk-aware hierarchical planning schemes, and demonstrate
increased planning efficiency over time as compared to a
baseline A* planner while maintaining planner robustness.

II. ONLINE HIGH-LEVEL MODEL ESTIMATION FOR
EFFICIENT HIERARCHICAL ROBOT NAVIGATION

In this section, we review the definition of the hierarchical
planning problem, then discuss the online generation and use
of a coarse representation for the navigation problem. Finally,
we discuss two variants of a hierarchical planner which use
the coarse representation.

A. Problem Formulation: Hierarchical Planning

Consider a robot with state x defined in some continuous
configuration space X ∈ Rd, where d is the dimensionality
of the state. The goal of the motion planning problem is to

find a valid (i.e., non-colliding and dynamically feasible) plan
that takes the robot from an initial state xs to a goal state
xg, where xs, xg ∈ X , while minimizing a cost function of
the plan, such as time or distance. We can approximate a
continuous plan as a sequence of discrete primitive actions
a ∈ A, where we define each action as an explicitly encoded
trajectory with a specific beginning state xi = b(a) and a
specific ending state xj = e(a), where xi, xj ∈ X . Formally,
we define a sequence of primitive actions as a primitive plan,
p = {a0, a1, ..., an−1}, where n is the number of actions in
the plan, and p ∈ P , where P is the space of all possible
discretized primitive plans. We will also refer to the sequence
of actions in a plan as a0:n−1. We define the discrete optimal
planning problem,

p∗ = arg min
p∈P

n−1∑
i=0

c(ai; Γ)

s.t. f(ai; Γ) = 1 ∀i ∈ {0, 1, ..., n− 1}
b(ai) = e(ai−1) ∀i ∈ {1, ..., n− 1}
b(a0) = xs, e(an−1) = xg,

(1)

where f is a partition function that maps every a ∈ A to
feasibility, f : A → {0, 1}, where f(a; Γ) = 0 means the
trajectory from the start state in a to the end state in a is
infeasible, c is a scalar cost function defined over primitive
actions, c(a; Γ) ∈ R, and Γ is additional inputs, such as the
kinematic model and the map. Throughout this work, we
will refer to the tuple, {c(ai; Γ), f(ai; Γ)}, as the primitive
navigation properties of action ai.

In practice, optimizing over all plans p ∈ P can be
intractable as the length of the largest dimension of the
configuration space and the potential length of any plan
increases, since discrete planning complexity scales expo-
nentially with plan length. Hierarchical planning algorithms
increase the tractability of motion planning at long length
scales by representing the plan space using a combination
of primitive and high-level actions a ∈ A, which are actions
based on simplified models of the planning problem that
do not necessarily capture all planning constraints1. While
various hierarchical planning methods have been proposed
(e.g., [20]–[23]), one approach is to use high-level actions to
generate high-level plans p ∈ P which approximate solutions
to (1) [23], where p = {a0, a1, ..., an−1}, n denotes the
number of high-level actions in the high-level plan, and P
denotes the high-level plan space. Formally, we write the
high-level planning problem,

p∗ = arg min
p∈P

n−1∑
i=0

c(ai;Γ)

s.t. f(ai;Γ) = 1 ∀i ∈ {0, 1, ...,n− 1}
e(ai−1) ⊆ b(ai) ∀i ∈ {1, ...,n− 1}
xs ∈ b(a0), xg ∈ e(an−1),

(2)

where f is a partition function that maps every high-level
action in A to its validity, f : A→ {0, 1}, c is a scalar cost

1Throughout this work, we use italic type to denote primitive variables
and functions, and bold type to denote high-level variables and functions.



function defined over high-level actions, c(a;Γ) ∈ R, Γ is
additional inputs, and b(ai) and e(ai) denote the set of valid
start states and terminal states for high-level action ai.

While there are multiple ways to solve the optimizations
in (1) and (2), one common approach is to represent the
optimizations as two separate graph search problems, a high-
level graph search problem and a primitive graph search
problem, where graph nodes represent states and weighted,
directed graph edges represent actions in the respective
optimizations. Planning begins with high-level graph search,
and continues until a low-cost high-level plan p is found.
The high-level plan is then used to increase the efficiency
of primitive graph search by guiding planning to primitive
subgraphs which are likely to contain low-cost primitive
solutions (e.g., by using high-level plan costs as heuristics
[24], or by constraining primitive search to subgraphs that are
consistent with the high-level plan [21], see Figure 1(c)-(d)),
reducing the total computation required to find such solutions.
When a search process uses a high-level plan p to guide the
search for a primitive plan p, we call the resulting primitive
plan p a primitive refinement.

While hierarchical planning can be efficient, it is obvious
that the quality of the high-level planning problem, or the
combination of A, c(a;Γ), and f(a;Γ), dictates the ability of
the high-level search process to effectively guide primitive
planning. Intuitively, a good choice of representation is one
that ensures plan similarity2, or that low-cost, feasible plans
in P have low-cost, feasible primitive refinements in P .
Unfortunately, generating planning representations which
exhibit plan similarity can be challenging, and in practice such
representations are often hand-designed for specific problems
[24], or require significant prior domain knowledge to be
generated [12], [15], [16]. Instead, we define a simple A and
use online planning results to infer estimates of c(a;Γ) and
f(a;Γ) over the course of a multi-query planning trial. An
overview of our approach is given in Figure 2.

B. The High-Level Action Space

The goal of the high-level action space is to generate
a small (e.g., low-resolution) representation of the planning
problem that enables efficient planning without compromising
plan quality. In this work, we recognize that different
optimal primitive plans in structured environments often share
common primitive subplans, or partial sequences of primitive
actions al:m, when navigating through the same region in
the environment. By grouping these subplans into high-level
actions a, we can generate a compact, flexible high-level
action space A which uses the primitive navigation properties
of similar, past planning queries to improve the high-level
estimates of navigation properties for use in current and future
planning queries. Formally, we define the high-level action
space by assuming that the configuration space X can be
decomposed into a finite set of regions3 R that an agent can

2This is an extension of cost similarity [16] which considers plan feasibility.
3For simplicity of implementation, we assume that regions are defined

by decomposing the environment into low-resolution grid cells, but we note
that other decomposition functions could be used.

traverse between, and define a high-level action aij as the
set of primitive subplans that begin in and remain in region
Ri until terminating in region Rj , similar to the definition
given by Vega-Brown and Roy4 [12],

aij = {p|p ∈ P, ak ∈ p, b(ak) ∈ Ri ∀k ∈ {0, 1, ..., n−1},
e(an−1) ∈ Rj}. (3)

C. Primitive Subplans as Instances of High-Level Actions

By representing high-level actions as sets of primitive plans,
we can use results of planning in the primitive action space A
(e.g., occupancy map) to induce costmaps over the high-level
action space A. When we generate a primitive refinement p
of high-level plan p, where p ∈ P , we observe a sequence
of primitive actions in the environment, p = {a0, a1, ..., an},
where ai ∈ A, subject to the high-level planning constraints,
and we also observe whether or not the refinement meets
the constraints in (1). However, because we define high-level
actions a ∈ A as sets of primitive subplans, we can also post-
process a primitive refinement p into a sequence of primitive
subplans, p = {ps0, ps1, ..., psn}, where each subplan ps is a
sequence5 of primitive actions al:m that obeys the constraints
of a high-level action a as defined in Equation 3,

psij = {al:m|ak ∈ p, b(ak) ∈ Ri ∀k ∈ {l, l + 1, ...,m},
e(am) ∈ Rj}. (4)

This formulation allows us to treat a primitive subplan
psij collected in an environment as an example high-level
action aij which transitions from region Ri to Rj . We can
consolidate these example high-level actions into a dataset
for inference of high-level function values. We will also refer
to the primitive subplan psij as an instance of a high-level
action6 aij .

Once instances psij of high-level actions aij are identified,
we can calculate the navigation properties of the instances
using the known primitive cost and traversability functions,
c(a) and f(a). We calculate the cost c(psij) of instance psij
by summing the primitive cost function over all primitive a
in example action psij ,

c(psij) =
∑
a∈psij

c(a). (5)

Similarly, we can calculate the feasibility of a high-level
action instance by evaluating the feasibility of each primitive
action in the instance. If any of the primitive actions in the
instance are infeasible, the instance cannot be executed in
the environment, and is labeled as infeasible. Formally, we
calculate the feasibility f(psij) of a high-level action instance

4This definition implies that aij is a set of sequences of primitive actions.
5In a mild abuse of notation, each aij is an unordered set of plans

aij = {pij}. Each pij is an ordered sequence of actions pij = {al:m}.
6In environments that induce regions Ri which are not internally fully

connected, an agent may enter and exit Ri multiple times to access the
disconnected subsets of Ri. This can result in the agent executing the same
high-level action aij more than once in a single optimal trajectory. In this
case, we record each execution of the high-level action separately.
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Fig. 2: Overview of the approach. Rather than planning at a single resolution in a large primitive state space (a), we partition primitive
state spaces into high-level regions using a grid (b) and define high-level actions as transitions between high-level regions (c). Then,
primitive plans induce navigation properties over the high-level action space, like the partial primitive plan in green (d), which shows the
left high-level action is feasible and has a cost equal to the plan length in the region. Finally, we use online datasets of primitive plan
navigation properties to estimate high-level functions over time via two recursive estimation techniques, Averaging (not shown) and Bayes
Filtering (e). Results are shown for the Medium-Risk planner (see Section III-B).

psij as the minimum feasibility of the primitive actions in the
instance,

f(psij) = min
a∈psij

f(a), (6)

where we note that f(psij) is a binary value.
Using this technique, each time that a primitive refinement

is generated in an environment, we generate a dataset of
high-level action instances and their navigation properties,

D = {(psij , c(psij), f(psij)), (p
s
jk, c(p

s
jk), f(psjk)), ...}. (7)

D. The High-Level Functions

While high-level action instances and their navigation
properties provide information about previous plans in
the environment, it is not obvious how to incorporate a
dataset of example action instances and navigation properties
Dij = {(psij , c(psij), f(psij))

0, (psij , c(p
s
ij), f(psij))

1, ...} ⊆ D
for a high-level action aij into approximations of high-level
navigation properties that improve planning performance in
novel queries over time. In this work, we would like to
generate compact high-level functions c(aij) and f(aij) which
estimate the navigation properties of high-level actions aij
over the course of a multi-query planning trial,

c(aij |c((psij)1:q)) = gc(Dij) (8)

f(aij |f((psij)1:q)) = gf (Dij), (9)

where gc and gf are cost- and feasibility-specific functions
and q is the number of observed instances of a high-level
action aij . We recognize that we can treat the plan cost and
feasibility results c(psij) and f(psij) in dataset Dij as streamed
measurements zcij and zfij of the high-level functions,

zcij = c(psij) (10)

zfij = f(psij), (11)

where for computational efficiency we assume that measure-
ments of different high-level actions in a plan are independent
(e.g., zcij ⊥ zcjk). By treating the navigation properties of
high-level action instances as streamed measurements, we
can reduce the multi-query high-level function construction
problem to a recursive estimation problem.

E. Online High-Level Function Updating as Recursive Esti-
mation

The goal of the recursive estimation problem is to use
streaming measurements to approximate the current value of
a function. However, recursive estimation approaches often
rely on a model of the data collection process to define a
measurement update function, and a prior to determine an
initial, uncertain belief over the function value. While agents
with additional environmental information, such as data from
a perception system, may have the necessary information to
approximate such models, other agents with less information
may not be able to use the models. In this work, we consider
two approaches to recursive estimation. The first assumes no
information about the data collection process or initial belief
and uses online averaging to update function values. The
second assumes a user can make informed guesses about the
data collection process and can generate uninformative prior
beliefs for the functions, and uses a Bayes filter to improve
function value estimates over time.

1) Averaging: When we cannot make any assumptions
about the data collection process or prior function values, we
approximate high-level function values as a rolling average
of the observed measurements,

c(ai|zcij,1:q) = c(ai|zcij,1:q−1) +
zcij − c(ai|zcij,1:q−1)

q
(12)



f(ai|zfij,1:q) = f(ai|zfij,1:q−1) +
zfij,q − f(ai|zfij,1:q−1)

q
(13)

where c(ai|zcij,1:q) and f(ai|zfij,1:q) are scalars.
2) Bayes Filtering: The averaging approach is simple, but

it is unable to represent uncertainty in high-level action values.
Representing uncertainty is important for high-level online
estimation, as high-level representations of primitive planning
problems are often lossy and initial high-level function value
estimates can be inaccurate. However, accurately describing
uncertainty from streaming measurements often requires
additional information about the measurement process and
environment. When we know or can approximate properties
of the measurement process and prior beliefs over high-level
navigation properties, we can explicitly represent uncertainty
in high-level function values over time by maintaining a belief
over each function value. Then, we can apply Bayes filtering
to recover the belief update equations,

Pr(c(aij)|zc1:q) ∝ Pr(zcq |c(aij))Pr(c(aij)|zc1:q−1) (14)

Pr(f(aij)|zf1:q) ∝ Pr(zfq |f(aij))Pr(f(aij)|zf1:q−1). (15)

In practice, we find that simple modeling decisions can lead
to uncertainty-aware high-level functions which enable robust
planning. In the experiments that follow, we model the cost
function belief distribution and cost measurement probability
distribution as Gaussian distributions, an approach used by
the planning under uncertainty community [17], [25]. We
also model the feasibility function belief distribution as a
Beta distribution, and the feasibility function measurement
probability distribution as a Bernoulli distribution. By se-
lecting distributions which are conjugate, we ensure the
computational efficiency of the update step. Additionally,
we assume that the variance σs of the cost measurement
process for the measurement zc can be modeled as a hand-
tuned constant, σs = λ. We note that we initially assume
uninformative priors for c(aij) and f(aij) (high-variance and
uniform, respectively).

F. Hierarchical Planning using High-Level Functions Esti-
mated Online

Finally, we discuss the hierarchical planner used to find
solutions to the optimization in (1), guided by solutions to
the optimization in (2), which are calculated using the high-
level representation developed in Sections II-B to II-E. At
its core, the hierarchical planner is a multi-level graph-based
forward search algorithm which iterates between planning
in graphs which approximate the high-level and primitive
optimizations. Planning begins in the high-level graph, and
nodes are expanded according to a priority queue until a goal
node is expanded and a high-level plan p is recovered. Once
p is found, we constrain the search space of the primitive
graph to contain only the subgraph of primitive edges which
could be possible refinements of the high-level plan p by
temporarily marking all other edges as infeasible. We search
in the constrained graph until a primitive plan p is found, or
until all reachable nodes in the subgraph have been expanded.

Fig. 3: Planning in graphs with known and unknown edge costs.
The goal of the problem is to generate a path from the red start
node to the green goal node using Dijkstra’s algorithm. The true
costs of navigating in the environment are given in the primitive
graph (a), and the high-level graph (b) represents planning in the
proposed high-level action space, where each region is a node and
each high-level action is an edge. When the costs of high-level
actions are known, edge costs are deterministic (c), and expanding
nodes (blue shading) in order of cost-to-come ensures that the first
expansion of the goal node is optimal (d). When the costs of high-
level actions are unknown and therefore approximated (represented
by theˆ symbol, as in e), the first expansion of the goal node (f)
may not be optimal after plan refinement (g, where the refined plan
is shaded purple). Instead, additional paths to the goal must be
expanded and refined (h-i) to ensure search optimality.

If the primitive plan is feasible and lower cost than existing
primitive plans, it is stored. Then, the result of the constrained
primitive planning problem is converted into the dataset in
Equation 7 using the method in Section II-C, and the high-
level functions are updated according to Sections II-E.1 and
II-E.2. Planning returns to the high level graph, and continues
until a termination condition is met. However, because the
costs of high-level graph edges can change over time and
may be probabilistic, some modifications to standard forward
search are required for the high-level planner.

1) Queue Prioritization: For both the averaging and
filtering approaches, we order nodes v on the high-level
queue according to the A* evaluation function f† [1],

f†(v) = hcc(v) + hcg(v) (16)

where v = e(an−1) is the terminal node of the last action
an−1 in high-level subplan p, and hcc and hcg are the cost-
to-come and Euclidean cost-to-go of node v. However, when
the properties of graph edges are probabilistic (i.e., for the
filtering approach), it is not obvious how to determine the
current cost of the subplan p which terminates in node v on
the queue. We choose to approximate the cost-to-come of v
as the expected cost of the subplan p,

hcc(v) = E[c(p)] =
∑

aij∈p

µij , (17)

where µij is the mean of c(aij), subject to the constraint that
the subplan feasibility is above a hand-tuned threshold γ,

f(p) = arg min
aij∈p

f(aij) ≥ γ (18)

Plans with feasibility values less than γ are deferred (see
Section II-F.3).

2) Termination Conditions: Because the costs and feasi-
bilities of high-level graph-edges are uncertain, we cannot
assume that we have found the lowest cost high-level plan
after expanding a goal node in the high-level graph. For the
averaging approach, we choose to terminate when the known
cost of the current best primitive plan p is lower than the



Fig. 4: Planning metrics for the hierarchical planners over time as a percentage of Primitive planning metrics. Mean values are
plotted as solid lines, and the 5th-95th interquartile range, smoothed using a 4-iteration sliding window for improved visualization, is
shaded. We show that all hierarchical planners resulted in increased planning efficiency over time, demonstrated by a decreased number of
nodes expanded (a) and decreased wallclock time (b) as compared to the Primitive baseline (black dashed line). We also demonstrate that
the approaches achieved planner robustness over time, demonstrated by a reduction in plan costs or a maintenance of low-cost plans over
time (c). Finally, we show that the risk-based planning formulation enabled risk-aware planning during early planning; for example, the
conservative Average planner (red) was inefficient during early trials but found low-cost plans, while the High-Risk planner (blue) was
efficient but found high-cost plans.

A* evaluation function value of the lowest-cost node on the
high-level queue, f†(v). For the filtering approach, we use the
risk-aware termination condition defined by Pearl and Kim
[25], which terminates when the expected risk of terminating
with a primitive plan p of cost c(p) is less than a pre-defined
risk threshold δ. We calculate the expected risk of terminating
with a given primitive plan cost c(pi),

R(c(pi)) =

∫ c(pi)

τ=−∞
(c(pi)− τ)p(τ |µi, σi)dτ, (19)

where µi and σi are the mean and variance of c(ai) and
we select a risk threshold as a percentage of the cost of the
primitive plan, as in [25]

δ =
R(c(p))

c(p)
. (20)

3) Soft Pruning of Dominated Nodes from a Priority Queue
with Uncertain Costs: In deterministic graph search, planners
rely on admissible heuristics and visited lists to ensure that
graph nodes are expanded exactly once, and that when a
node is expanded, the optimal cost-to-come for the node
is recorded. However, when the costs of nodes on a queue
are uncertain, we cannot assume that the first expansion
of a node is optimal (or even feasible) in terms of cost-to-
come, as demonstrated in Figure 3. In uncertain environments,
this implies that we must maintain all possible paths to all
possible nodes in a queue to avoid pruning a path that may
be optimal, but this is computationally infeasible. Instead, we
introduce the notion of a dominated plan, or a plan which
is suboptimal given the current beliefs of plan costs and
feasibilities, and store dominated plans in a list of deferred
plans, similar to Vega-Brown and Roy [12], from which plans
are not considered for expansion. Then, when the high-level
functions are updated, we reevaluate the navigation properties
of plans on the priority queue and in the dominated list,
and move plans between the queue and the list as necessary.
This technique allows the priority queue to focus search on
plans in the environment which are likely to lead to low
cost high-level solutions, without compromising the ability to
reconsider previously high-cost high-level plans, if high-level
function values change.

Planner Average Medium-Risk High-Risk
Nodes Expanded,

Early Planning 40% 36% 17%

Nodes Expanded,
Late Planning 19% 19% 13%

Total Nodes Expanded 23% 22% 14%
Wallclock Time,
Early Planning 106% 112% 51%

Wallclock Time,
Late Planning 37% 41% 30%

Total Wallclock Time 51% 55% 34%
Plan Cost,

Early Planning 102% 104% 131%

Plan Cost,
Late Planning 102% 103% 104%

Total Plan Cost 102% 103% 110%

TABLE I: Planning performance for the hierarchical planners
during different stages of planning. Metrics were calculated by
summing the nodes expanded, wallclock time, and plan costs for
all trials in a planning stage; early planning was defined as the first
100 iterations, while late planning was defined as the remaining
400 iterations. Total metrics were the sum of plan metrics for all
planning iterations. We demonstrated that the hierarchical planners
were efficient and robust over time, and that the risk-aware planner
could be used to elicit different balances between planner efficiency
and robustness during early planning.

III. EXPERIMENTS

In this section, we describe the experimental procedure used
to benchmark our hierarchical representations and planners
against a primitive planner running the A* algorithm in a
simulated outdoor environment, and report aggregate metrics.

A. Experimental Setup

We demonstrated our approach in a simulated outdoor
environment comprised of 100 1024x1024 pixel maps of
randomly generated environments consisting of four terrain
elements: pavement, sand, forest, and water. Each terrain
element was associated with a 64x64 pixel 2D occupancy
map, resulting in environments with 256 terrain elements.
Terrain element occupancy maps were randomly rotated and
flipped to create more diverse scenes. The environment was
modeled such that all terrain elements except water were
traversable, and on average, due to the geometric structure
of the environment, it was least expensive to navigate in a
pavement element and most expensive to navigate in a forest
element. An example occupancy map of the environment is
shown in Figure 1(a). We assumed a holonomic vehicle with
a discrete action set: {up, down, left, right} one pixel with no
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Fig. 5: Scatter plots of steady state planning results. Scatter plots
of nodes expanded, wallclock time in milliseconds, and plan cost
in simulation units for (a-c) Medium-Risk vs. Primitive and (d-f)
High-Risk vs. Primitive (blue circles) for the last 10 queries in each
of the 100 environments. The black dotted line is an equal value
reference.

pose estimate noise. To generate the hierarchical action space,
we discretized each environment into 256 equally sized, non-
overlapping regions (64x64 pixels per region), resulting in a
high-level action space with 1024 actions.

B. Simulation Evaluation Results

To evaluate our approach, we simulated a robot completing
sequences of 500 randomly generated feasible planning tasks
in each of the 100 environments using three variants of
the hierarchical approach. The first variant (Average) used
the averaging approach in Section II-E.1 to update the
high-level functions, and used the averaging termination
condition in Section II-F.2. The second (Medium-Risk) and
third (High-Risk) variants of the approach used the Bayes
filtering approach in Section II-E.2 to update the high-level
functions, and used the risk-aware termination condition in
Section II-F.2 with medium (δ = 0.5) and high (δ = 1.0)
risk thresholds, respectively. All hierarchical planners used
the feasibility threshold γ = 0.5, and the risk-aware planners
used the constant variance λ = 0.1. If any of the hierarchical
planners expanded 10,000 high-level nodes during the course
of a planning trial, the planner timed out and the current
lowest cost primitive plan was returned; this occurred for a
single Average trial. Additionally, one High-Risk planning
trial failed to find a plan; this trial was removed from
aggregate metrics. We compared each variant of our approach
to a non-hierarchical planner (Primitive) which generated
optimal plans by running the A* search algorithm over
the primitive, unconstrained occupancy map. We evaluated
planner efficiency by comparing the total number of high-
level and primitive nodes expanded and the wallclock time
taken by the different planners, and we evaluated planner
robustness by comparing the final plan costs of the different
planners.

We demonstrated that the online hierarchical planners were
capable of increasing planning efficiency while minimizing
loss of plan robustness for multi-query planning problems.
Planning performance metrics for the hierarchical planners are
compared over time in Figure 4 as percentages of Primitive

performance metrics7. In Table I, we compare the total number
of nodes expanded, the total wallclock time, and the total plan
cost accumulated by the planners during all trials. Across all
planning trials, planning with the online representations and
hierarchical planners resulted in a 77-86% decrease in the
total number of nodes expanded and a 45-66% decrease in
the total wallclock time as compared to the Primitive baseline
while incurring only a 2-10% increase in plan costs.

We also showed that the risk-based formulation enabled the
planner to balance between planning efficiency and robustness
in a principled manner during early planning, which we
defined as the first 100 planning iterations. We computed
planning metrics for early planning only; results are shown
in Table I. As expected, the Average planner demonstrated
the most conservative behavior of the planners, while the
High-Risk planner demonstrated the most risky behavior.
For example, the High-Risk planner was most efficient, and
expanded 17% of the nodes and took 51% of the time as
the Primitive planner during early planning, but found plans
which were 31% more expensive. Conversely, the average
planner was the most robust of the hierarchical planners
during early planning, and found plans which were only 2%
more expensive than the optimal Primitive planner; however,
Average was less efficient, expanding 40% of the nodes and
taking 106% of the time as compared to Primitive during early
planning. The Medium-Risk planner achieved an intermediate
risk profile as compared to the other high-level planners, and
expanded 36% of the nodes as compared to Primitive, while
incurring 104% of the plan cost. However, due to the cost
of maintaining and using the risk-based representation in
a risk-averse way, Medium-Risk was slower than the other
planners, finding plans in 112% of the time as Primitive.

We also analyzed the late planning performance of the high-
level planners, which we defined as planner performance for
the last 400 queries of a 500 query trial. Performance metrics
are given in Table I; Figure 5 includes example scatter plots
comparing nodes expanded, wallclock time, and plan costs
for Medium-Risk and High-Risk as compared to Primitive for
the last 10 queries in each of the 100 planning environments.
We demonstrated that the hierarchical approaches expanded
13-19% of the nodes and executed in 30-41% of the wallclock
time as compared to the Primitive baseline while incurring
only a 2-4% increase in plan cost during late planning. These
results indicate that the online representations and hierarchical
planners are capable of significantly improving planning
efficiency during late planning as compared to the baseline
while minimizing loss of planner robustness, as demonstrated
by the minimal increase in plan cost.

Finally, we directly evaluated the plan similarity of high-
level and primitive plans over time to analyze the ability of
the high-level representation to accurately represent primitive
navigation properties. When a high-level plan was refined
using the primitive planner, we compared the predicted
navigation properties of each high-level action aij to the

7The planners approach steady state around the 150th trial in the test
environments; additional trials are excluded for visual clarity.



Fig. 6: Plan similarity between high-level and primitive plans
over time. Average absolute error between predicted high-level plan
costs and primitive plan costs and the average number of failed
refinements over time for the three hierarchical planners. Mean
values are plotted as solid lines, and the 5th-95th interquartile range,
smoothed using a 4-trial sliding window, is shaded. Average absolute
error and the average number of failed refinements decreased over
time for all planners, indicating that the online planners were capable
of learning useful high-level representations over time; High-Risk
converged least quickly, as it prioritized efficient termination over
exploration in the environment.

measured navigation properties psij of the resulting example
primitive plan. We compared the average absolute error per
high-level action and the number of incorrect feasibility
assignments for the different planners in Figure 6. All
planners demonstrated a decrease in average absolute cost
error and number of incorrect feasibility assignments over
time. Additionally, we noted that high-level function error
decreased most slowly for the High-Risk planner, which was
expected given that High-Risk prioritizes efficient planning
over planner robustness during early planning. Overall, we
demonstrated that the high-level representations were able to
use online planning results to increase plan similarity over
multi-query planning trials.

IV. CONCLUSION

We have presented a novel method for improving hierar-
chical planning efficiency over a multi-query planning trial
by estimating properties of high-level representations online
using only previous primitive planning computations. We
demonstrated that using the estimated functions increased
hierarchical planning efficiency over time as compared to
a primitive planner running the A* search algorithm when
navigating in a simulated outdoor environment, while only
slightly increasing average plan cost. We introduced average-
based and risk-aware versions of our approach, and showed
that the risk-aware estimated functions allowed an agent to
trade off between planning efficiency and robustness during
multi-query planning trials.
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