
Learned Functions for Perceptually Informed Robot
Navigation

by

Martina Katherine Stadler

B.S., Massachusetts Institute of Technology (2018)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Aeronautics and Astronautics

August 18, 2020

Certified by. .
Nicholas Roy

Professor, Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Zoltan Spakovszky

Professor, Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Learned Functions for Perceptually Informed Robot

Navigation

by

Martina Katherine Stadler

Submitted to the Department of Aeronautics and Astronautics
on August 18, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

While existing robotic systems predominantly rely on geometric information to inform
robot navigation, non-geometric information, such as object-level maps and overhead
imagery, provide rich navigation cues that can be used to inform intelligent navigation
behaviors. However, it is not obvious how non-geometric navigation cues should be
incorporated into existing robot motion planning pipelines.

This thesis presents two novel methods that use learning to incorporate non-
geometric information into classical planning techniques for robot navigation. First,
we present Learned Sampling Distributions, a novel method for learning a sam-
pling distribution based on local hybrid geometric and object-level maps to inform
a sampling-based motion planner for navigation in unknown environments. Our ap-
proach uses expert demonstrations to learn a probability distribution that places high
probability in regions of the environment that are likely to be on optimal paths to
the goal, like hallways and doorways in an office environment, and results in up to
a 2.7x increase in the probability of finding a plan for a resource-constrained agent
when compared to a baseline planner. Second, we present Perceptually Informed Ab-
stractions, a novel method for hierarchical planning at long length scales that learns
properties of abstract actions for use in a risk-aware hierarchical discrete planner, con-
ditioned on low-resolution overhead images. We also present a preliminary analysis
of the approach in a simulated toy environment.

Thesis Supervisor: Nicholas Roy
Title: Professor, Aeronautics and Astronautics

3

4

Acknowledgments

First, I would like to thank my parents, Patti and Scott, for teaching me the value

of an education and for supporting me relentlessly throughout my studies. Dad,

thank you for always showing me your pet projects, and for encouraging me to set

my sights on MIT. Mom, thank you for not only teaching me, but showing me the

value of education by going back to school (and getting a PhD!), all while raising

your kids. Thank you Berna and JJ, for contributing to a home where work and

play were equally important. Thank you Andrew, for your endless supply of support,

encouragement, and patience, and for always knowing how to make me laugh. While

I’ve certainly appreciated your many contributions to this thesis since becoming your

home office mate, I do hope that none of them have quite made it into this document.

I would also like to thank the people who have shaped my academic career. Thank

you Nick Roy, for introducing me to the world of robotics research as an undergraduate

student, and for continuing to support me throughout my graduate career. Thank you

to all the members of the Robust Robotics Group for your insights. But especially,

thank you Kyel Ok, for originally encouraging me to pursue research and graduate

studies in the RRG. And finally, thank you Katherine Liu, for taking me on both as

a UROP and a coauthor. You’ve taught me most of the things I know about how to

be a researcher, and for that I will forever be indebted to you.

This research was sponsored by the Army Research Laboratory and was accom-

plished under Cooperative Agreement Number W911NF-17-2-0181. Their support is

gratefully acknowledged.

5

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Non-Geometric Navigation Behaviors 18

1.2.1 Learned Sampling Distributions 20

1.2.2 Perceptually Informed Abstractions 21

1.3 Thesis Overview . 21

2 Related Work 23

2.1 The Continuous Optimal Planning Problem 23

2.2 The Discrete Optimal Planning Problem 25

2.3 Model Construction . 26

2.3.1 Configuration Space Discretization 26

2.3.2 Graphs for Robot Motion Planning 28

2.3.3 Sampling-Based Graphs . 29

2.4 Search . 31

2.4.1 Forward Search . 31

2.5 The Hierarchical Planning Problem 33

2.5.1 Fact-Based Hierarchical Planning 34

2.5.2 Metric-Based Hierarchical Planning 35

2.6 Informed Planning . 37

2.6.1 Informed Model Construction 37

2.6.2 Informed Search . 42

2.6.3 Informed Hierarchical Planning 44

7

2.7 Non-Geometric Information to Inform Planning 45

2.7.1 Biologically Inspired Planning 45

2.7.2 State-of-the-art Multimodal Robot Navigation 46

2.7.3 Metrically Aligned Non-Geometric Information for Robot Nav-

igation . 47

3 Learned Sampling Distributions 51

3.1 Optimal Planning in Unknown Environments 51

3.2 Multimodal Information for Navigation 53

3.3 Learned Sampling Distributions . 54

3.4 Neural Network Model Structure and Optimization 56

3.5 Online Planning in Unknown Environments 58

4 Learned Sampling Distributions Experiments 61

4.1 Experimental Setup . 61

4.2 Training Dataset Generation . 62

4.3 Evaluation Pipeline . 63

4.4 Simulation Results . 63

4.4.1 Effects of Learned Sampling Distribution and Learned Cost

Function . 64

4.4.2 Ablation Study: Learned Sampling Distribution and Euclidean

Distance Cost Function . 69

4.5 Real-World Navigation Results . 72

4.5.1 Offline Comparison of Plans 72

4.5.2 Online Comparison of Plans 73

4.6 Conclusion . 74

5 Perceptually Informed Abstractions for Efficient Robot Navigation 77

5.1 Problem Formulation . 77

5.2 Perceptual Information for Navigation 78

5.3 Perceptually Informed Abstractions for Navigation 80

8

5.4 Learned Abstract Functions . 82

5.4.1 Learned Traversability . 82

5.4.2 Learned Cost Function . 83

5.5 Neural Network Structure and Optimization 84

5.6 Hierarchical Planning using Informed Abstractions 84

5.6.1 Uncertainty-Aware Planning using Cost Thresholds 85

5.6.2 Uncertainty-Aware Planning using Traversability Thresholds . 86

5.6.3 The Algorithm . 86

5.7 Preliminary Experiments . 89

5.7.1 Experimental Setup . 90

5.7.2 Learned Traversability . 91

5.7.3 Hierarchical Planning using Ground Truth Abstract Functions 91

6 Conclusion 97

9

10

List of Figures

1-1 Two examples of non-Euclidean navigation behaviors in structured,

unknown environments. 16

1-2 Two examples of non-Euclidean navigation behaviors in large, known

environments. 17

2-1 Two examples where the Euclidean distance heuristic fails in structured

environments. 43

2-2 Two examples where object-level information can inform navigation in

unknown environments. 49

3-1 Neural network used to generate learned sampling distributions. . . . 57

3-2 Overview of model used to learn sampling distribution. 59

3-3 The effects of different contextual inputs on the learned sampling dis-

tribution. 60

4-1 Example intermediate and final trajectories of 𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠 and

𝑈𝑛𝑓 + 𝐸𝑢𝑐. 65

4-2 Comparison of plan success rates in MIT Floorplan simulations. . . . 66

4-3 Comparison of distance traveled in MIT Floorplan simulations. 67

4-4 Additional comparisons of 𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠 and 𝑈𝑛𝑓 + 𝐸𝑢𝑐. 69

4-5 Comparison of replanning rates. 71

4-6 Qualitative comparison of plans on real-world data. 73

4-7 Qualitative comparison of plans generated during online planning. . . 74

11

5-1 Two examples where overhead images can inform intelligent navigation

behaviors. 79

5-2 Overview of hierarchical planning in the toy example environment. . . 89

5-3 Traversability classification accuracy. 92

5-4 Comparison of plans generated by the hierarchical and baseline plan-

ners with no abstract cost uncertainty. 93

5-5 Comparison of plans generated by the hierarchical and baseline plan-

ners with abstract cost uncertainty. 95

12

List of Tables

4.1 A comparison of plan costs between 𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠 and 𝑈𝑛𝑓 + 𝐸𝑢𝑐. . 68

4.2 A comparison of plan costs between 𝐿𝑆𝐷𝑠 + 𝐸𝑢𝑐 and 𝑈𝑛𝑓 + 𝐸𝑢𝑐. . . 70

5.1 A comparison of hierarchical and baseline plan metrics for different

cost function uncertainties. 94

13

14

Chapter 1

Introduction

1.1 Motivation

In recent years, there has been significant interest in transitioning robots from con-

trolled laboratory and factory environments to real-world, uncontrolled environments.

Robust, efficient robot navigation is one key capability for deploying robots in the

real world, as basic mobility is a necessary component of many robotic systems, from

search-and-rescue vehicles to assistive care robots. Unfortunately, many real-world

robots are confined to simple navigation paradigms that rely on dense geometric

mapping alone to avoid collisions with the environment and to inform intelligent

navigation behaviors. In practice, these pipelines often make assumptions that lead

to myopic real-world planning, like assuming that unknown space is free, and that

Euclidean distance heuristics are good approximations of plan costs in complex envi-

ronments.

While these assumptions are sufficient for planning in small, known environments,

they lead to poor navigation results in structured, unknown environments. For ex-

ample, consider the two scenarios in Figure 1-1. We assume that a ground vehicle

equipped with a depth camera begins a navigation task at the green circle. The

robot has no map of the environment a priori, but has a simultaneous localization

and mapping (SLAM) system that localizes the robot and builds a map of the world

online (e.g., Mur-Artal and Tardós [60], Rosinol et al. [74]). In (a), the robot is in a

15

Figure 1-1: Two examples of non-Euclidean navigation behaviors in struc-
tured, unknown environments. Consider a ground vehicle equipped with a depth
camera that begins a navigation task at the green circle in an unknown environment.
The robot uses a SLAM system to localize and build a partial map of the environ-
ment online. (a) The robot is in a hallway and is tasked with navigating to a goal
that is outside and to the right. Instead of greedily moving towards the windows to
minimize the Euclidean distance to the goal (red dashed arrow), the robot recognizes
an exit sign and follows the hallway to exit the building (green dashed arrow). (b)
The robot is on a road and is tasked with navigating to a goal that is outside and to
the left. Instead of greedily attempting to reach the goal by navigating through the
building (red dashed arrow), the robot follows the road until it reaches the nearest
intersection (green dashed arrow). The image in (b) is from the KITTI dataset [25].

hallway and is tasked with reaching a goal that is outside and to the right. In this

example, the optimal navigation behavior is to navigate down the hallway towards

the door and exit sign, which indicates a method of egress, to exit the building and

then turn right to navigate towards the goal. However, due to limitations in depth

sensing (e.g., range and field of view), the robot has not geometrically mapped the

far wall of the building at the start of the task, and greedily navigates to the wall in

an attempt to minimize the Euclidean distance to the goal. The robot must navigate

to and map the entire wall before realizing that it is in a bug trap, and only then

exits through the door at the end of the hallway. In (b), the robot is tasked with

navigating to a goal that is outside and to the left. The optimal navigation behavior

is to navigate down the road and turn left at a nearby intersection. However, because

the robot assumes that unknown space is free, it greedily moves towards the building

16

Figure 1-2: Two examples of non-Euclidean navigation behaviors in large,
known environments. Consider a ground vehicle that begins a navigation task at
the green circle in a large, known environment. (a) The Euclidean distance heuris-
tic encourages the robot to explore a forest region, which is expensive to plan and
navigate in (red dashed line), despite the existence of a lower cost, simpler path that
navigates around the forest (green dashed line). (b) The Euclidean distance heuristic
encourages the robot to consider plans through an untraversable lake (red dashed
line), instead of focusing computation on generating a path through the complex
forest environment (green dashed line). Images collected from Bing Maps [58].

in an attempt to minimize the Euclidean distance to the goal, and only continues

down the road once the building has been fully mapped.

The failure modes of assuming a Euclidean distance heuristic are not unique to

navigation in unknown environments. They also occur in known environments over

long length scales, where a poor choice of heuristic can cause planners to waste com-

putation considering high cost plans. For example, consider the two scenarios in

Figure 1-2, in which a ground vehicle equipped with a known map of the environment

attempts to navigate from the green circle to the red circle in a large, outdoor envi-

ronment. In (a), the Euclidean distance heuristic encourages the robot to navigate

through a forest, although the complex geometry of the forest (i.e., trees) makes it

unlikely to be part of a low-cost trajectory. In (b), the Euclidean distance heuristic

encourages the ground vehicle to attempt to navigate through a lake, and the robot

wastes computation attempting to find a valid trajectory that goes through the water,

instead of focusing computation on solving the challenging navigation task through

the forest.

17

1.2 Non-Geometric Navigation Behaviors

Intuitively, humans do not struggle with navigation tasks in the ways that robots do.

It is unlikely that a human would attempt to navigate through a wall in a building, or

navigate into a building when trying to navigate between outdoor locations. Similarly,

it is unlikely that a human would attempt to navigate through a forest or a lake,

if given another option. However, these intuitive strategies – avoiding walls and

buildings, using doors and exit signs to inform egress, and quickly identifying high

cost or untraversable areas for navigation – rely on a non-geometric understanding of

the world. In this thesis, we argue that reasoning about navigation behaviors using

non-geometric information is necessary to enable intelligent navigation in structured

environments.

This claim is partially supported by real-world intelligent navigators. It has been

shown that humans and other mammals have specific hardware in the brain that

encodes non-geometric cues for navigation. Rats have specialized cells that identify

absolute orientations, specific locations, relative translations, and borders of closed

environments [18]. Humans encode navigable regions in the occipital place area, a

specialized region of the visual cortex, even while completing tasks unrelated to nav-

igation [66]. Behaviorally, expert human taxi drivers showed improved performance

on place recognition tasks from images as compared to novice taxi drivers, but did

not show improved performance on geometry-based tasks, such as map drawing and

place location on maps [16]. While mammal navigation behaviors are not fully un-

derstood, these examples indicate that non-geometric information may be important

to enabling intelligent navigation behaviors.

However, many advancements in robot motion planning have largely been confined

to improving navigation results in fully-known, noiseless geometric maps in simulation

and in carefully controlled laboratory environments (e.g., [35, 36, 59]). For example,

Ichter et al. [35] learned a sampling distribution for sampling-based motion planning

which placed samples in regions of the environment that were likely to be on optimal

paths to the goal, like narrow passageways in a small maze, but only considered

18

planning in fully known maps. While this and other techniques effectively exploit fully

observed geometric features of the environment to improve motion planning outcomes,

they do not incorporate non-geometric information or environmental uncertainty into

intelligent navigation behaviors.

There are a number of challenges to incorporating non-geometric information into

robot motion planning paradigms. First, it is not clear what kind of non-geometric in-

formation should be used to inform intelligent planning. In the toy example in Figure

1-1 alone, we identified objects (i.e., exit signs and doors), non-object semantic classes

(i.e., hallways, buildings, and roads), and semantic context (i.e, the fact that the goal

was outdoors) as important signals when defining navigation behaviors. Second, while

we know that intelligent agents store many kinds of non-geometric information, it is

not clear when and how these agents use different sources of information to make

planning decisions.

In this thesis, we explore various representations of geometric and non-geometric

information for use in intelligent navigation pipelines. In some cases, we represent

non-geometric information explicitly. We use object-level maps, generated from a

metrically accurate object-level SLAM system based on 2D object detections [65],

to explicitly represent windows, doors, and exit signs in 2D metric space. Addition-

ally, we use semantic context in the form of a boolean indicator to explicitly indicate

whether or not the goal of the robot is indoors or outdoors. In this thesis, we will

refer to explicit non-geometric information as semantic information. In other cases,

we represent non-geometric information implicitly. We use overhead images to im-

plicitly represent non-object semantic classes, such as buildings and roads, and we

use partial occupancy maps, built online, to implicitly identify hallways based on

partial geometric structure. In this thesis, we will refer to implicit geometric and

non-geometric information as perceptual abstractions. By using various representa-

tions of non-geometric information, we are able to encode the signals necessary to

inform intelligent robot navigation.

Along with encoding semantic information and perceptual abstractions, we need

to enable robots to use non-geometric information when making planning decisions.

19

While some approaches have attempted to explicitly write down desired navigation

behaviors relative to semantic and perceptual cues, hand-crafted behaviors are un-

likely to scale to different robots or complex environments [72, 18]. For example,

reconsider the hallway in Figure 1-1a. In the original ground vehicle formulation, the

optimal navigation strategy exited the building through the door at the end of the

hallway. However, if the door at the end of the hallway no longer had an exit sign

above it, navigating to the door may not be part of an optimal planning strategy.

Similarly, if we now assume that the robot is a quadrotor, and that the windows on

the far wall are open, the red path is likely to be on the optimal path to the goal.

Because accurately interpreting semantic information and perceptual abstractions to

inform planning requires complex reasoning about the state of the environment and

the state of the agent, hand-coding behaviors for navigation in complex environments

will be tedious, if not intractable.

To avoid explicitly defining semantically- and perceptually-informed navigation

behaviors, we propose learning functions that encode these behaviors based on ex-

ample optimal trajectories. We use off-the-shelf optimal planners (e.g., [84]) in simu-

lated fully known environments that model geometric and non-geometric information

to generate datasets of correlated optimal trajectories, geometric information, and

non-geometric information. Then, we combine these datasets with neural networks

to learn robot navigation behaviors from a subset of the available geometric and non-

geometric information. Specifically, we encode the learned navigation behaviors in

functions that can be used in classical planning pipelines.

1.2.1 Learned Sampling Distributions

The first contribution of this thesis is Learned Sampling Distributions for Efficient

Planning in Hybrid Geometric and Object-Level Representations, a novel method

that uses partially observed geometric maps, object-level maps, and semantic context

to learn a sampling distribution and cost function for use in a sampling-based motion

planner in unknown environments. By biasing sampling to areas of the environment

that are likely to be on optimal paths to the goal, we demonstrate that the learned

20

planner is more likely to exhibit semantically-informed behaviors, such as staying in

hallways, using doors to enter rooms, and using doors with exit signs to exit buildings.

We demonstrate that our approach is up to 2.7 times more likely to find a valid plan

than a sampling-based motion planner using a uniform sampling distribution and

a Euclidean distance cost function for a resource-constrained agent in a simulated

university floorplan environment. We also demonstrate that our approach can lead

to less costly plans than the baseline approach in some environments. Finally, we

demonstrate promising qualitative results on a 1/10th scale RC car navigating online

in a building at MIT.

1.2.2 Perceptually Informed Abstractions

The second contribution of this thesis is Perceptually Informed Abstractions for Effi-

cient Robot Navigation, a preliminary method that uses coarse overhead imagery to

learn cost and traversability functions to inform hierarchical navigation in long length

scale environments. By using overhead imagery to approximate the cost and feasibil-

ity of low-resolution abstract actions, we enable an agent to quickly identify subsets

of high-resolution plans that are likely to be low cost, while avoiding high-resolution

planning in areas of the environment that are likely to contain high cost solutions.

We demonstrate preliminary results of our approach in a toy outdoor environment.

1.3 Thesis Overview

In this thesis, we present novel methods for using learning to incorporate non-geometric

information into classical planning techniques. In Chapter 2, we introduce the plan-

ning problem and discuss existing work in the field of informed robot motion planning.

In Chapter 3, we introduce Learned Sampling Distributions, an approach that uses

hybrid geometric and object-level maps to learn a sampling distribution for sampling-

based motion planning in partially observed environments. In Chapter 4, we present

the results of using the Learned Sampling Distributions method in a simulated uni-

versity floorplan environment, and demonstrate promising results on a 1/10th scale

21

RC car navigating in a building at MIT. In Chapter 5, we introduce Perceptually In-

formed Abstractions, an approach that uses overhead images to learn a cost function

and a traversability function for abstract actions in a hierarchical planner. We also

present a preliminary analysis of the method in a simulated toy outdoor environment.

Finally, we conclude and discuss potential avenues for future work in Chapter 6.

22

Chapter 2

Related Work

In this chapter, we formalize the continuous and discrete optimal motion planning

problems. We review historical and state-of-the-art motion planning algorithms, and

motivate the use of non-geometric information to inform planning decisions for robot

navigation.

2.1 The Continuous Optimal Planning Problem

Consider a robot with state 𝑥 defined in some continuous configuration space 𝒳 ∈ R𝑑,

where 𝑑 is the dimensionality of the state. The goal of the motion planning problem

is to find a valid (i.e., non-colliding and dynamically feasible) plan that takes the

robot from an initial state 𝑥𝑠 to a goal state 𝑥𝑔, where 𝑥𝑠, 𝑥𝑔 ∈ 𝒳 . We assume that

each state can be classified as either valid or invalid, and that there exists a known

function that determines the validity of each state, 𝑓 : 𝒳 → {0, 1}. We denote a

plan 𝜌 as a continuous mapping through 𝒳 , i.e., 𝜌 : [0, 1] → R𝑑, and assume that

an additive scalar cost function, 𝑐(𝜌) ∈ R, is given. Formally, we define the optimal

planning problem as the minimization of 𝑐(𝜌) subject to constraints,

23

𝜌* = arg min
𝜌

𝑐(𝜌)

s.t. 𝐼𝜌(𝜌
*) = 1

𝜌*(0) = 𝑥𝑠, 𝜌
*(1) = 𝑥𝑔,

(2.1)

where 𝐼𝜌(𝜌) is an indicator function that evaluates the validity of 𝜌,

𝐼𝜌(𝜌) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑓(𝜌(𝑡)) ∀𝑡 ∈ [0, 1]

0 otherwise.
(2.2)

In general, this optimization can be high-dimensional and non-convex. While the

complexity class of the optimization is dependent on the problem input (e.g., the rep-

resentation of the robot and the representation of the obstacles in the environment),

for some general input classes, such as the general motion planning problem (i.e., the

piano mover’s problem), the optimization has been proven to be PSPACE-complete

[73, 14]. While there exist continuous planners that solve Equation 2.1 exactly, these

planners rely on clever decompositions of the environment that require obstacles to

be defined in restrictive ways (e.g., analytically defined polygons) [51]. While it may

be possible to generate analytic representations of an environment offline or in sim-

ulation, this representation does not support real-world robot navigation in complex

environments using noisy sensors. Instead, we turn to methods that approximate

solutions to Equation 2.1 to solve real-world navigation problems.

In practice, there are two main methods for approximating the optimization

in Equation 2.1: local methods (e.g., trajectory optimization [43, 101]), which use

gradient-based techniques to find locally optimal navigation behaviors, and global

methods (e.g., graph-based methods, sampling-based methods), which use discrete

approximations of the configuration space to enable efficient search for approximate

global solutions to the optimization. In this thesis, we focus on global methods due

to our interest in generating plans in structured and long length scale environments,

where local methods are likely to suffer from local minima.

24

2.2 The Discrete Optimal Planning Problem

To reduce some of the intractability of the optimization in Equation 2.1, we can

approximate continuous plans as sequences of discrete primitive actions 𝑎 ∈ 𝒜 that

can be executed by the robot in the environment. Formally, we define a sequence of

primitive actions as a primitive plan, 𝑝 = 𝑎0 ∘ 𝑎1 ∘ ... ∘ 𝑎𝑛−1, where ∘ is the action

concatenation operator, 𝑛 is the number of actions in the plan, and 𝑝 ∈ 𝒫 , where 𝒫 is

the space of all possible primitive plans. Additionally, we assume a known partition

function that maps every 𝒜 to its validity, 𝑓 : 𝒜 → {0, 1}, and a known scalar cost

function, 𝑐(𝑝) ∈ R. Formally, we define the discrete optimal planning problem,

𝑝* = arg min
𝑝

𝑐(𝑝)

s.t. 𝐼𝑝(𝑝
*) = 1

𝑝*(0) = 𝑥𝑠, 𝑝
*(1) = 𝑥𝑔,

(2.3)

where 𝐼𝑝(𝑝) is a function that evaluates the validity of a primitive plan,

𝐼𝑝(𝑝) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑓(𝑎𝑡) ∀𝑡 ∈ {0, 1, ..., 𝑛− 1}

0 otherwise.
(2.4)

While committing to a finite action set 𝒜 guarantees that, for some problems, the

approximation will not be able to represent optimal and in some cases valid solutions

to Equation 2.1, in the limit of an infinitely expressive 𝒜, 𝜌* can be well-approximated

by 𝑝*.

In practice, there are two key challenges involved in implementing discrete opti-

mal planning for real-world robot navigation. First, an approximation scheme that

converts a continuous state space into a discrete model of actions 𝑎 that is amenable

to planning must be defined; we call this process model construction. Second, an al-

gorithm that uses the discrete model to search for solutions 𝑝* to Equation 2.3 must

be defined; we call this process search. We discuss model construction and search in

25

detail in Sections 2.3 and 2.4.

2.3 Model Construction

The goal of model construction is to generate an approximate model of the continuous

planning problem that is both representative of the original planning problem (i.e.,

that maintains elements of the original planning problem that inform good navigation

behaviors), and that is tractable to build and search in. Throughout this section, we

analyze the representativeness of a model using two metrics, model completeness, or

whether a valid plan that satisfies the constraints in Equation 2.3 exists in the model,

and model optimality, or whether a valid plan that minimizes the objective function in

Equation 2.3 exists in the model. We also use two metrics to quantify the tractability

of different models, namely by describing the size of the plan space, 𝒫 , induced by

the model. First, we consider the model branching factor, or the number of actions

that can be taken by the agent from a given state in the model. Second, we consider

the model depth, or the number of actions in a solution path, given the model. In

general, the complexity of the search process goes as 𝒪(branching factordepth). Un-

fortunately, this results in a tension between representative and tractable models. To

enable tractable planning, we would like to develop search algorithms that have a

small depth and branching factor; however, these models require generating a com-

pact, and often less expressive model of the environment, leading to decreased model

representativeness. In this section, we consider a number of approaches that cleverly

trade off between model representativeness and tractability.

2.3.1 Configuration Space Discretization

The first model we consider to optimize Equation 2.3 is configuration space discretiza-

tion. The key insight of state discretization is that continuous states that are close

to each other in configuration space are likely to have similar properties, and can

therefore be considered jointly when searching for plans. Formally, a state discretiza-

tion is generated by decomposing a continuous configuration space into a finite set of

26

discrete states, 𝑥𝑑 ∈ 𝒳𝑑. The most common methods of state discretization assume a

constant-resolution discretization, as in standard occupancy maps [75, 57], or a hier-

archy of constant-resolution discretizations, as in octree-based methods [32]. Then,

the set of discrete actions, 𝑎𝑑 ∈ 𝒜𝑑, is recovered by making assumptions about valid

transitions between configurations. For holonomic agents, or agents using a low-level

controller that approximates holonomic behaviour, it is commonly assumed that ac-

tions cause robots to transition between directly adjacent states, or neighbors, in the

discretized configuration space. For agents with more complex dynamics, methods

such as state latices [70] can be used to identify an alternative set of actions that

obey dynamic feasibility constraints.

To analyze the model, we first consider its representativeness. Models based on

discretized configuration spaces are only capable of representing plans at the resolu-

tion of the state discretization. For problems where the discretization resolution is

well fit to the configuration space, discretized models can efficiently represent low cost

solutions to challenging planning problems. However, poorly discretized models can

lead to computational inefficiency, or to models that are unable to represent optimal

or even feasible plans. With that being said, discretized state models represent all

possible plans that can be represented at a given resolution, and are therefore called

resolution-complete. Similarly, because discretized models represent all plans at a

given resolution, they necessarily represent the lowest cost plan at a given resolution,

and are therefore called resolution-optimal.

Next, we consider the model’s tractability. The branching factor of the model is

defined by the number of states adjacent to every state in the discretized configura-

tion space, and is most commonly a small constant. However, the model depth, or

the number of actions in a plan, is linearly dependent on the resolution of the dis-

cretization (i.e., a plan at half the resolution could be represented in half the number

of actions). However, because of the exponential relationship between plan depth

and the complexity of the search process, linearly higher resolution models induce

exponentially more expensive search problems. In practice, discretized state models

can be intractable to build and search in for planning problems in structured and

27

long length scale environments.

2.3.2 Graphs for Robot Motion Planning

To avoid the computational intractability of discretized state methods, graph-based

models for motion planning were introduced. The key insight of graph-based models

is that the length of each action in a plan should be based on the complexity of

the local configuration space. In areas of the configuration space with significant

structure, the robot should consider short actions that can capture the features of the

configuration space, but in regions of the environment with little structure, longer

actions are sufficient to represent possible traversals in the environment.

Formally, we define a planning graph 𝐺 as a collection of vertices 𝑉 and edges

𝐸, 𝐺 = {𝑉,𝐸}, where 𝑉 = {𝑣0, 𝑣1, ..., 𝑣𝑛}, and 𝐸 = {𝑒0, 𝑒1, ..., 𝑒𝑚}. For the planning

problem, each vertex 𝑣 represents a state 𝑥 in the configuration space, and each edge

𝑒 represents a valid action that takes the robot from some state 𝑥𝑖 to a different state

𝑥𝑗. We assume known validity functions over vertices and edges, 𝑓𝑣 : 𝑉 → {0, 1}

and 𝑓𝑒 : 𝐸 → {0, 1}, and we assume that all vertices and edges in 𝐺 are valid (i.e.,

𝑓𝑣(𝑣) = 1 ∀𝑣 ∈ 𝑉 and 𝑓𝑒(𝑒) = 1 ∀𝑒 ∈ 𝐸). Then, we can define a valid trajectory 𝒯 as

a directed, acyclic subgraph of 𝐺. With this model, we can rewrite the optimization

in Equation 2.3 as a search over subgraphs of 𝐺:

𝒯 * = arg min
𝒯

𝐶(𝒯)

s.t. 𝒯 * = {𝑉 *, 𝐸*}, 𝑏(𝑒0) = 𝑥𝑠, 𝑡(𝑒𝑚) = 𝑥𝑔,

𝑣 ̸= 𝑣′ ∀𝑣, 𝑣′ ∈ 𝑉 *

𝑡(𝑒𝑖) = 𝑏(𝑒𝑖+1) ∀𝑖 ∈ {1, 2, ...,𝑚− 1}

𝑉 * ∈ 𝑉,𝐸* ∈ 𝐸,

(2.5)

where 𝐶(𝒯) ∈ R is a cost function defined over trajectories, 𝑡(𝑒) indicates the terminal

node of edge 𝑒, and 𝑏(𝑒) indicates the start node of edge 𝑒.

To analyze graph-based methods, we first consider their representativeness. Early

28

approaches to planning graph construction focused on computing minimal graphs of

the environment based on the geometric properties of valid and invalid robot config-

urations by using tools from computational geometry, such as visibility graphs [53]

and Voronoi diagrams [86], to determine the connectivity of the configuration space.

By directly reasoning about the geometry of the environment, these approaches were

guaranteed to represent all minimum-cost paths in an environment, under some as-

sumptions (e.g., the robot was often assumed to be holonomic). Therefore, these

planning graphs were guaranteed to represent all possible optimal traversals in the

environment, and were both complete and optimal.

Next, we consider the tractability of graph-based methods. The branching factor

of graph-based models was dependent on the exact graph construction technique, but

was normally a small value correlated with the number of obstacles in the local region

of the environment. However, graph-based methods were able to significantly reduce

the depth of planning solutions using edges. Specifically, long paths through open

areas of the environment were compressed into single actions (i.e., edges), allowing the

number of actions in a path to be correlated with the complexity of the environment,

instead of the absolute length of the path.

Unfortunately, computing geometric properties of the configuration space can be

expensive, especially in structured and long length scale environments. Instead, we

turn to sampling-based graphs, which combine sampling and constant-time collision

checking to efficiently generate planning graphs in complex environments.

2.3.3 Sampling-Based Graphs

To avoid the inefficiencies of direct graph construction based on configuration space

geometry, sampling-based graph construction techniques were introduced [42]. The

key insight in sampling-based models is that determining whether or not a given

configuration or path is in collision can be more efficient than explicitly representing

and reasoning about obstacles in a configuration space.

Planning graphs for sampling-based motion planning are generated by sampling

and deterministically connecting states in the configuration space. Specifically, states

29

𝑥 are randomly sampled from the continuous configuration space and considered for

representation as candidate graph vertices 𝑣 according to a user-specified sampling

distribution Φ(𝑥; Γ), where Γ are optional additional inputs to the distribution; one

common choice of sampling distribution is a uniform sampling distribution [42, 50,

47]. Then, valid candidate vertices are considered for addition to the graph using a

deterministic strategy. While methods for candidate vertex addition vary (in graph-

based algorithms, candidate vertices are added directly to the graph; in tree-based

algorithms, the tree is expanded in the direction of the candidate vertex) [51], each

results in vertices distributed according to Φ(𝑥; Γ) in non-colliding regions of the

configuration space [42, 50].

Once vertices have been added to the planning graph, edges are deterministically

added to the graph using an edge addition strategy; common strategies include con-

necting each vertex to its 𝑘-nearest neighbors in search space, connecting each vertex

to all neighbors within a certain radius, or connecting each vertex to its 𝑘 lowest-cost

neighbors [41], provided that the resulting edge represents a valid traversal in the

environment. A traversal is considered valid if it does not violate any planning con-

straints, such as occupancy constraints and kinematic constraints. Two special cases

of the 𝑘 neighbors strategy are the nearest neighbor tree-based strategy, where each

vertex is connected to its single nearest neighbor [50], and the lowest-cost neighbor

tree-based strategy, where each vertex is connected to its single lowest-cost neigh-

bor [41]. The process of constructing and searching a sampled graph is referred to as

Sampling-Based Motion Planning (SBMP). While a number of SBMP algorithms have

been proposed, most are based on two prominent algorithms: Probabilistic Roadmaps

(PRMs) [42] and Rapidly-Exploring Random Trees (RRTs) [50], and their optimal

counterparts, PRM*s and RRT*s [41]. We refer interested readers to the respective

papers for additional information.

To analyze sampling-based models, we first consider their representativeness. Be-

cause the models do not guarantee that any given vertex will be added to the graph

in finite time, sampling-based models do not admit exact completeness or optimality

guarantees. However, by using the theory of random geometric graphs, they do ad-

30

mit asymptotic guarantees, that is, guarantees of plan existence and quality as the

number of samples in the graph tends to infinity. Specifically, when the sampling

distribution Φ(𝑥; Γ) has a non-zero probability of sampling each state 𝑥 in the config-

uration space (i.e., Φ(𝑥; Γ) > 0 ∀𝑥 ∈ 𝒳), sampling-based models are probabilistically

complete [42, 50], that is, in the limit of sampling an infinite number of candidate

vertices, a sampling-based model will represent a valid plan, if one exists. Addition-

ally, some sampling-based motion planners with intelligent edge addition strategies

are asymptotically optimal [41], that is, in the limit of sampling an infinite number

of candidate vertices, the sampling-based model will capture the optimal solution to

the planning problem, if a solution exists.

Second, we consider the model’s tractability. Because sampling-based methods

build graphs, they generate similarly-sized plan spaces to traditional graph-based

models. However, the sampling-based graph construction process is much less ex-

pensive than other graph construction methods. While other graph-based methods

require careful computations of properties of the configuration space to generate rep-

resentative graphs, sampling-based graphs rely on only randomness and inexpensive

collision checking to capture the connectivity of the configuration space. This process

is much less expensive than decomposing the configuration space based on geometry.

2.4 Search

In the following section, we discuss search methods, which use the discrete models

discussed in Section 2.3 to generate solutions to the optimization in Equation 2.3.

While a number of search algorithms exist, we choose to highlight forward search

algorithms due to their generality and ubiquity in the planning literature.

2.4.1 Forward Search

The goal of the forward search algorithm is to find a valid plan from a start state

to a goal state in a discrete model of the environment. Planning begins by adding

the start state to a priority queue and instantiating a graph of candidate solution

31

paths. Then, at every iteration, a state is removed from the queue and added to

the solution graph. If the state is the goal state, planning terminates. Otherwise,

the state is expanded. In the expansion process, the search algorithm applies the set

of valid actions at the current state to generate new states, which are added to the

priority queue, if they are not already on the queue or in the solution graph. This

process repeats until the goal state is found, or until no states are left on the queue,

indicating that no valid plan exists.

One key to efficient search is the efficient prioritization of state expansions. For

example, imagine a robot navigating between adjacent offices in an office building.

The robot only needs to consider discrete states and actions between the two offices,

and does not need to consider states and actions in hallways on the opposing side of

the building, or on other floors of the building. In fact, considering these states and

actions would likely be prohibitively expensive, given the exponential relationship

between plan length and the complexity of the planning problem.

While the efficient prioritization of state expansion is important to ensuring com-

putational tractability for forward search, it is not obvious how discrete states should

be prioritized when building planning graphs. The study of prioritization schemes

is centered around heuristics, which approximate the usefulness of candidate vertices

for the progression of the search process as a real-valued number, or heuristic ℎ ∈ R.

While there is a rich literature of heuristics for planning [51, 69, 68], the most com-

mon heuristics score vertices based on cost-to-come, the cost of traversing from the

start vertex to the candidate vertex [17, 71], cost-to-go, the approximated cost of

traversing from the candidate vertex to the goal vertex, or a weighted combination

of cost-to-come and cost-to-go [29]. A selection of task-specific navigation heuristics

are considered in Section 2.6.2.

While a variety of heuristics have been successfully deployed for robot motion

planning, one particular class of heuristics, admissible consistent heuristics, have

been particularly influential in the planning literature. Admissible heuristics do not

overestimate the costs of plans, and consistent heuristics do not disproportionately

overestimate or underestimate the cost of any one plan relative to other plans con-

32

sidered by the search algorithm. When an admissible, consistent heuristic is used to

prioritize state expansion for forward search, the forward search algorithm, which we

call A*, is guaranteed to find the lowest-cost solution in the discrete model, provided

that a solution exists [29].

2.5 The Hierarchical Planning Problem

In Section 2.3, we discussed a number of discrete models for solving the optimization

in Equation 2.3. However, for some high-dimensional and long-length scale environ-

ments, even compact discrete models of an environment are insufficient to guarantee

planning tractability. Hierarchical planning algorithms increase the tractability of

motion planning by representing the action space at various resolutions. Specifically,

hierarchical models represent the space of possible plans using abstract actions a, or

actions based on simplified models of the planning problem that do not necessarily

capture all planning constraints. Search proceeds using abstract actions to generate

abstract plans p which approximate solutions to the original planning problem, where

p = a0 ∘ a1 ∘ ... ∘ a𝑛−1
1. Formally, we can write the abstract planning problem as a

minimization subject to constraints:

p* = arg min
p

|p|−1∑︁
𝑡=0

c(a𝑡)

s.t. 𝐼p(p) = 1

p*(0) = 𝑥𝑠,p*(1) = 𝑥𝑔,

(2.6)

where c(a) and f(a) are abstract cost and validity functions defined over the abstract

action space, and 𝐼p(p) is a function that evaluates the validity of an abstract plan,

𝐼p(p) =

⎧⎪⎪⎨⎪⎪⎩
1 if f(a𝑡) ∀𝑡 ∈ {0, 1, ...,|p| − 1}

0 otherwise.
(2.7)

1Throughout this work, we use italic type to denote primitive variables and functions, and bold
type to denote abstract variables and functions.

33

In a slight abuse of notation, we overload the abstract cost function to simplify the

notation for the cost of an abstract plan, c(p) =
∑︀|p|−1

𝑡=0 c(a𝑡). Once low cost abstract

plans are found, hierarchical planners use properties of p* to guide the search for a

primitive plan 𝑝 in the original configuration space, 𝒳 (e.g., by solving Equation 2.3,

but over a reduced configuration space that only includes states consistent with p).

We call a primitive plan guided by an abstract plan a primitive refinement.

While hierarchical planning algorithms vary significantly by application and do-

main, they can often be characterized by the type of decomposition used to generate

abstract states and actions. In the following sections, we briefly review two types

of decompositions for abstract states and actions: fact-based decompositions and

metric-based decompositions.

2.5.1 Fact-Based Hierarchical Planning

In fact-based planners, abstract states are defined as sets of primitive states in which

particular facts about the world are true. For example, consider a robot cleaning two

plates in a sink. The state of the world could be represented based on which items in

the sink are clean and dirty. Then, abstract actions could be defined by preconditions

– facts about the world that must hold true for the abstract action to be executed

– and postconditions – facts about the world that must hold true after the abstract

action is executed. For example, one abstract action could be to clean a plate; its

preconditions could be that the robot is at the sink, and the plate in question is dirty,

and its postconditions could be that the robot is at the sink, and the plate in question

is clean. Importantly, the abstract action does not capture the complete state of each

item in the sink – for example, one of the plates may be dirty, small, and in the left

corner of the sink, while the other plate may be dirty, large, and in the right corner

of the sink – and it does not capture the primitive actions necessary to complete the

abstract action (e.g., pick up the plate, put soap on the sponge, clean the plate with

the sponge). However, when cleverly designed, the abstract representation can be

sufficient to generate an abstract plan (first clean plate 1, then clean plate 2) that

can be refined into a primitive plan for cleaning the items in the sink. In general, this

34

technique is more efficient than directly attempting to search for a primitive plan in

the full configuration space.

One of the earliest implementations of a fact-based hierarchical planner was the

STanford Research Institute Problem Solver (STRIPS) planner, which was used to

generate plans for the Shakey robot [21]. The STRIPS planner defined abstract

states of the world as collections of facts about the environment and the state of the

robot. Abstract states were modified using abstract actions, also called operators,

defined using preconditions and postconditions on the facts of the world. To plan

using STRIPS, a sequence of actions was applied to the initial state of the world;

planning terminated once a goal state was reached. Notably, STRIPS did not define

primitive plans associated with each abstract action; instead, it was assumed that

if an abstract action’s preconditions and postconditions were satisfied in an abstract

plan, a valid high-resolution plan refinement of the abstract action could be generated

using a high-resolution planner. This hierarchical planning approach allowed the

robot to generate abstract plans in abstract space, then use a motion planner to

execute individual abstract actions in the abstract plan by solving a series of smaller

optimizations over a reduced plan space. Fact-based planners have been extended

to a variety of domains, including efficient suboptimal task and motion planning by

assuming the reversibility of abstract actions with uncertain refinements [40], and

task and motion planning in unknown environments while explicitly reasoning about

uncertainty [46].

2.5.2 Metric-Based Hierarchical Planning

While fact-based hierarchical planners have greatly increased the computational tractabil-

ity of complex planning problems, they can be overly complicated for the navigation

problem, where a compact representation of important information for planning is

already known: maps, which store metrically-correlated facts about the environment

(e.g., occupancy maps). A number of approaches have been proposed to extend metric

maps to the hierarchical planning setting. One common approach to metric hierarchi-

cal planning defines abstract states as grid cells in a low-resolution representation of

35

the environment and abstract actions as traversals through abstract grid cells. Early

approaches used hand-defined metrics to approximate the costs of abstract actions;

for example, Thorpe and Matthies [87] used a hand-defined cost function based on

the distance of the robot to the goal, nearby obstacles, and unknown space to ap-

proximate the costs of abstract actions in a grid environment. Other approaches have

used properties of the primitive plan space to approximate the costs of abstract ac-

tions; for example, one approach used wavelets to approximate the costs of abstract

actions based on terrain smoothness in a grid cell, computed from a known, primitive

terrain map [67]. More recently, another approach used deep learning to approximate

the costs and traversability of abstract actions, conditioned on local primitive height

map data [44]. While these approaches have been demonstrated to increase planning

speeds for some problems, they do not incorporate uncertainty into abstract actions,

and their abstract plans ultimately serve as inadmissible heuristics for the planning

problem in the primitive space.

Another line of work has focused on generating hierarchical abstractions that

maintain planning guarantees. Marthi et al. (2007) and Marthi et al. (2009) [55, 56]

proposed an angelic semantics for abstract actions. By assuming that uncertainties

in the costs of abstract actions could be resolved in favor of the planner, the authors

defined a hierarchical planning approach that used bounds on the costs of abstract

actions to compute hierarchically optimal plans. This approach was extended by

Vega-Brown and Roy [90] to guarantee the generation of primitively optimal plans,

assuming admissible bounds on the costs of abstract actions. Specifically, Vega-

Brown and Roy [90] defined a metric decomposition of the environment into convex

regions and calculated analytic upper and lower bounds on the costs of primitive

plans passing through the convex regions using Hausdorff and Euclidean distances,

assuming a path length cost function. While this technique effectively solved planning

problems that could be decomposed into a small number of convex regions and used a

path length cost function, it is not clear that the algorithm would scale to noisy, real-

world environments where sensor noise may lead to an inability to generate a finite

set of convex regions over which to plan, and where the path length cost function

36

may not be sufficient to encode desired robot behavior.

2.6 Informed Planning

In Sections 2.3, 2.4 and 2.5, we discussed vanilla implementations of common planning

paradigms. However, a wide body of literature has focused on improving planning

paradigms for use in task-specific planning scenarios. In this section, we discuss

modifications to common planning algorithms that use task or domain knowledge to

improve planning outcomes. We refer to these planners as informed planners.

2.6.1 Informed Model Construction

The goal of informed modeling is to generate models of the environment that improve

model representativeness or tractability. In the following section, we discuss informed

modeling for discretized configuration space models and sampling-based models. We

also briefly discuss informed cost functions, which can be used to approximate the

costs of discrete actions, if they are unknown.

Informed Configuration Space Discretization

To mitigate the challenges of representing discrete configuration spaces using a con-

stant resolution discretization or a hierarchy of constant resolution discretizations, a

number of methods have been proposed that non-uniformly decompose the configu-

ration space based on properties of the space itself. For example, some approaches

increase the resolution of the state decomposition near the surfaces of objects [10].

Other methods increase the resolution of the decomposition near the agent [8, 64].

Informed Sampling for Sampling-based Models

A variety of approaches have used informed sampling distributions Φ(𝑥; Γ) to increase

the quality and efficiency of sampling-based models. Specifically, these approaches

use sampling to increase the probability of quickly generating representative, tractable

37

graphs of the environment over which to search. In this section, we discuss a number

of informed sampling strategies.

One class of informed sampling distributions focuses on using obstacle information

to inform sampling. An early example of this paradigm was bridge sampling, which

was originally proposed to improve the efficiency of Markov-Chain Monte Carlo sam-

pling methods [9], and was later adapted to the robot motion planning domain [34].

In bridge sampling, pairs of samples were initially drawn uniformly from the envi-

ronment. Then, if both samples were in collision, the midpoint between the samples

was also considered and added to the graph, if unoccupied. This method has been

particularly successful in environments with narrow passageways, where samples in

collision with passage walls generate non-colliding states inside the passageway, in-

creasing the probability of generating a valid path through the passageway. Other

approaches have similarly relied on using occupied samples to sample more efficiently

in unoccupied areas of the state space. The Gaussian sampler biased sampling away

from large open areas of the state space by generating two nearby samples per iter-

ation and only adding a sample to the graph if one and only one of the samples was

non-colliding [11]. Obstacle-based sampling generated samples that traced obstacle

boundaries by sampling in obstacle regions, then traversing in a direction until a

valid region was encountered [5, 95]. Other approaches biased sampling away from

obstacles using a proximity look-up table based on previous collision checks [45].

Other works used geometry-based environmental decompositions to inform intel-

ligent sampling. A medial-axis-based approach used the Delaunay triangulation of a

Voronoi decomposition of the state space to approximate the medial axis of the space,

then explicitly sampled along the medial axis to increase the probability of generat-

ing a connected graph of the environment [28]. Another approach decomposed the

continuous state space into discrete cells, then sampled non-uniformly from the cells

based on local geometric characteristics, like narrow passageways [89].

Another line of work generated adaptive, explorative sampling strategies. Burns

and Brock (2005a) and Burns and Brock (2005b) [12, 13] generated an approximate

model of the configuration space online, and biased sampling to regions of the envi-

38

ronment that minimized the variance of the environmental model; this encouraged

the planner to explore novel regions. Siméon et al. [81] used visibility domains to

sparsify sampling while maintaining or improving graph connectivity; Yershova et al.

[96] introduced Dynamic-Domain RRTs, which adapt the visibility approach to avoid

over-exploration of Voronoi regions containing obstacles. Shkolnik and Tedrake [77]

introduced the BallTree method, which encouraged exploration by rejecting samples

that were near the existing tree.

Other planners calculated approximations of sample quality to bias sampling to-

wards regions of the configuration space that were likely to lead to low cost solutions.

Urmson and Simmons [88] used a sample quality metric, based on cost-to-come and

cost-to-go, to bias sampling to Voronoi regions that were likely to contain low-cost

solutions to the planning problem. Zucker et al. [100] used the REINFORCE Al-

gorithm to identify discretized regions of the environment that were often used in

optimal navigation strategies, then biased sampling towards these regions.

Yet other techniques used properties of solution paths to improve solution quality

for anytime techniques. Islam et al. [37] used the triangle inequality to directly

improve upon existing solutions, once found, and biased sampling towards regions

near solutions, which encouraged the refinement of existing solutions. Gammell et al.

[22] used constraints on geometric path length to restrict sampling to areas of the

environment that could improve an existing solution, once one was found.

Recently, a number of approaches have applied learning using geometric informa-

tion to the intelligent sampling problem for sampling-based motion planning. Ichter

et al. [35] used a conditional variational autoencoder to learn sampling strategies for

sampling-based motion planners from optimal trajectories, conditioned on available

occupancy information. The approach placed samples in narrow passageways and

along likely solution paths, and increased the probability of finding valid trajectories

while maintaining or improving upon solution cost, as compared to a sampling-based

motion planner using a uniform sampling distribution. Ichter et al. [36] and Molina

et al. [59] used learning to effectively build graphs for sampling-based motion plan-

ning in critical map regions, defined using the graph-theoretic measure betweenness

39

centrality; Molina et al. [59] used a convolutional neural network to classify regions of

the environment as critical or non-critical, then directly sampled from critical regions;

Ichter et al. [36] used a neural network to classify samples as critical or non-critical,

then used a global connection strategy for critical samples. Wang et al. [91] used

a convolutional neural network to learn a discretized probability distribution from

optimal trajectories, which increased the probability of sampling in regions that were

likely to occur on low-cost trajectories. Zhang et al. [97] used the REINFORCE al-

gorithm to learn a rejection sampler conditioned on the locations of existing samples,

and demonstrated the ability to decrease planning time by decreasing the number

of expensive operations taken in the planning loop, like collision checks and adding

nodes to the tree. While each of these approaches demonstrated improved planning

performance, they all relied on geometric information to inform graph construction

for sampling-based motion planning.

Informed Edge Addition for Sampling-based Models

A variety of approaches have been proposed to modify edge addition strategies for

sampling-based motion planning; these approaches focused on efficiently building

graphs that were likely to contain low-cost solutions to the planning problem. Jaillet

et al. [38] biased tree growth towards minimum-work paths, defined using a contin-

uous cost function, using a Metropolis transition acceptance step; this decreased the

likelihood of adding high-cost nodes that were unlikely to be part of low-cost plans

to the tree. More recently, Janson et al. [39] introduced the Fast Marching Trees

(FMT*) algorithm, which used a marching method to order batch tree edge addition

based on cost-to-come; this ordering biased tree growth to edges that were likely to

contain low-cost paths. Finally, Gammell et al. (2015) and Gammell et al. (2020)

[23, 24] introduced Batch Informed Trees (BIT*), which constrained tree growth to

edges in ellipses that defined low-cost planning solutions, extending informed tree

growth to the anytime setting.

40

Informed Cost Functions

Finally, we consider informed cost functions, which use properties of the environment

to approximate the costs of discrete actions, when these costs are not known. This

approach has been particularly useful for navigation in outdoor environments with

complex terrain types. One approach learned properties of environmental traversals

from overhead images, but relied on a hand-coded function to transform the environ-

mental properties into a cost function for a discrete planner [78]. Later, the maximum

entropy inverse reinforcement learning approach generated a parameterized cost func-

tion for navigation by maximizing the probability of recovering expert behavior using

the cost function [99]; for example, the approach placed high cost in regions of the

environment that experts traversed infrequently, while placing low cost in regions of

the environment that experts traversed frequently. However, this method and other

similar approaches required the optimizer to consider the relative costs of all trajec-

tories in an environment, complicating their application to large domains, where it

can be infeasible to consider the costs of all possible plans simultaneously [79, 80].

More recently, deep learning approaches have been proposed to learn cost functions

for the navigation task. One approach extended maximum entropy inverse reinforce-

ment learning to deep neural networks [93, 94], and learned cost functions based on

occupancy maps built online.

Challenges of Informed Model Construction

Despite their ubiquity in the literature, few of the above informed planning strategies

are regularly incorporated into real-world planners. One of the main limitations of the

presented approaches is their reliance on high-quality geometric information, which is

often unavailable due to sensor range and quality, or is insufficient to inform intelligent

planning decisions in complex environments. In Section 2.7, we motivate the use of

multimodal sensor information to inform robot navigation.

41

2.6.2 Informed Search

The goal of informed search is to define search algorithms that are more efficient or

find lower cost plans than traditional search algorithms. In the following section, we

discuss informed heuristics for robot motion planning.

Informed Heuristics

In this section, we review a number of heuristics for informed discrete search. As

discussed in Section 2.4.1, heuristics for discrete planning are used to direct search to

areas of the environment that are likely to lead to low cost solutions. However, accu-

rate heuristics can be expensive to compute, especially in structured environments,

where common heuristics like Euclidean distance produce inaccurate cost estimates.

Two example failure cases of the Euclidean distance heuristic in structured environ-

ments are shown in Figure 2-1. In both examples, the structure of the office building

indicates that the robot should follow hallways to traverse between offices or to exit

buildings. However, the overly optimistic Euclidean distance heuristic encourages the

robots to enter dead-end rooms in an attempt to greedily minimize the distance to

the goal.

To avoid these inefficiencies, a number of approaches for online multi-query plan-

ning precompute a limited number of traversal costs in known environments, then used

properties of the known traversals to approximate heuristics for novel queries. The

A*, Landmark and Triangle Inequality (ALT) and Landmark Pathfinding between In-

tersections (LPI) algorithms used landmarks to sparsely precompute traversal costs in

an environment, then used landmark vertices as waypoints when calculating heuristics

for online planning [26, 27]. These approaches were extended to the robotics domain

by Murphy and Newman [62], which used ALT to approximate traversal costs in com-

plex, outdoor terrains. While these approaches can be very efficient in multi-query

settings for deterministic environments, it can be expensive to precompute traversal

costs in an environment, even for a limited number of landmarks. Therefore, these

methods are most useful for problems where the computational cost of calculating

42

Figure 2-1: Two examples where the Euclidean distance heuristic fails in
structured environments. Each image depicts a real-world university floorplan,
where occupied space is shown in white and unoccupied space is shown in black.
The start and goal are depicted using green and red circles, respectively. The op-
timal trajectory calculated using the A* algorithm is shown in blue; the Euclidean
distance heuristic is shown in green. In both examples, the structure of the envi-
ronment indicates that the robot should travel through hallways to reach the goal,
but the Euclidean distance heuristic assumes the robot can take shortcuts through
walls, and severely underestimates the true costs of the optimal plans. We propose
using non-geometric information to enable the robot to plan efficiently in structured
environments.

landmark properties can be amortized over many queries.

Challenges of Informed Search

While clever heuristics can improve planning results for discrete planners, these ap-

proaches are still fundamentally limited by their reliance on high-resolution data to

generate accurate heuristics. In Section 2.7, we discuss the use of non-geometric

data to inform intelligent navigation strategies in the absence of complete geometric

information.

43

2.6.3 Informed Hierarchical Planning

In this section, we review a number of state-of-the-art hierarchical planners that used

properties of the navigation task to inform the abstract representation of the action

space. A number of abstractions have been proposed to complete the navigation task

by cleverly decomposing the environment into representations that make inference

about abstract plan properties easy. Stein et al. (2018) and Stein et al. (2020)

[82, 83] decomposed navigation in unknown environments into traversals between

frontiers between known and unknown space in an occupancy map, allowing for the

efficient factorization and computation of the Bellman Equation despite the high di-

mensionality of partially-observed environments. Vega-Brown and Roy [90] defined

an abstraction for navigation by decomposing the environment into a finite set of

regions through which traversals occured, and used convexity assumptions to analyti-

cally compute upper and lower bounds for the costs of traversals through the regions.

Larsson et al. (2019) and Larsson et al. (2020) [48, 49] defined an abstraction for

navigation by compressing a known probabilistic occupancy map using information

theoretic measures and a hand-tuned computational budget, and generated low cost

plans while considering a smaller portion of the state space than traditional methods.

Other approaches used deep learning to define an abstract state space and its prop-

erties; Klamt and Behnke [44] used a convolutional neural network (CNN) to learn a

grid-based abstract representation of an environment from primitive geometric height

map data, then learned properties of the representation using a fully connected net-

work (FCN).

Challenges of Informed Hierarchical Planning

While each of these approaches generated good plans when the abstraction and its

properties could be easily computed from primitive geometric information, it is not

clear how to extend these representations to environments where geometric features

are expensive to compute and maintain or insufficient to encode intelligent navigation

strategies. In Section 2.7, we motivate the use of non-geometric information to inform

44

hierarchical planning.

2.7 Non-Geometric Information to Inform Planning

In this section, we motivate the use of non-geometric information, namely seman-

tic information (i.e., explicit non-geometric information) and perceptual abstractions

(i.e., implicit non-geometric information), to inform planning. We also motivate the

use of multimodal information, or the simultaneous use of multiple types of informa-

tion, to inform planning. We consider biologically plausible navigation strategies, and

review the use of non-geometric information for planning.

2.7.1 Biologically Inspired Planning

Roboticists can gain significant insight into successful motion planning by consider-

ing biological planning strategies. Overwhelmingly, it has been shown that biological

agents reason about navigation decisions using non-geometric data. For example, it

has been shown that rats use head direction cells to determine absolute orientation,

place cells to identify specific locations, hexagonal networks of grid cells to specify

relative translations, and border cells to identify edges of closed environments [18].

It been shown that humans can detect navigable regions in novel environments with

no increase in cognitive load [66], and that the human hippocampus uses both Eu-

clidean distance heuristics and turn-by-turn navigation information when planning

[16]. These anecdotes provide significant evidence that humans and other mammals

use multimodal strategies when making planning decisions.

Beyond human physical sensory input and data storage, it has been demonstrated

that humans do not require dense geometric knowledge to make planning decisions. In

one study of the navigation behaviors of novice and expert taxi drivers, drivers were

asked to complete geometric map-based tests, like map drawing and place location

on maps, and then were tasked with completing taxi routes. While the expert group

demonstrated improved navigation performance when completing taxi routes, they

showed no improvement over the novice group in the geometric tasks, indicating that

45

human navigation behavior is not dependent on high-fidelity geometric mapping. Ad-

ditionally, the study notes that both novices and experts engaged in on-the-fly route

improvement, but that experts where better at identifying locations from single im-

ages [15]. These findings further demonstrate that human navigation behavior is far

more complex than simple geometric path planning; however, geometric path plan-

ning has dominated the robotic planning literature. We hypothesize that multimodal

information, if correctly incorporated into planning decisions, could improve robot

planning outcomes.

2.7.2 State-of-the-art Multimodal Robot Navigation

While biology indicates that navigating using non-geometric cues could improve robot

planning, it is not obvious how to represent multimodal information for planning.

State-of-the-art approaches use domain-specific, hand-crafted models to incorporate

non-geometric information into intelligent planning decisions. For example, Pronobis

et al. [72] presented the Deep Spatial Affordance Hierarchy (DASH), a four-level prob-

abilistic topological mapping scheme designed to specifically support complex robot

reasoning and planning using multimodal data. At the lowest level of the hierarchy,

DASH represented the environment using local body-centered occupancy maps. At

the highest level of the hierarchy, the model encoded probabilistic semantic knowledge,

such as probabilistic object detections and probabilistic room categorizations. While

the model was successful for some tasks, including semantic place categorization, nov-

elty detection, occupancy map generation, and occupancy map completion in an office

environment [72, 98], it relied heavily on hand-crafted interactions between topolog-

ical levels, and may be challenging to generalize to larger environments with more

complex inter-element and inter-layer interactions. The cognitive science community

introduced SemaFORR [19], an affordance-based decision-making system based on

learned spatial affordances and commonsense reasoning. However, SemaFORR relied

on three hand-crafted affordance categories and a hand-crafted hierarchical decision-

making system, and it is not clear how the approach could be extended to include a

more diverse set of affordances.

46

While these approaches successfully demonstrated navigation tasks in a small

number of simple environments, significant engineering effort would be required to

apply the approaches to larger or more complex environments. First, they require an

expert to define how data from different modalities should interact with each other

to inform planning. Second, because they use novel data structures to explicitly

represent task-specific hierarchical environmental interactions, they cannot be used

in conjunction with existing planning algorithms, and instead rely on model-specific

planning techniques. This limits their applicability to different agents navigating in

diverse environments.

2.7.3 Metrically Aligned Non-Geometric Information for Robot

Navigation

As stated above, one of the key challenges for using multimodal data for planning is

determining how different modalities of data should be synthesized to generate plan-

ning decisions. Existing approaches rely on expert knowledge to explicitly encode re-

lationships between non-geometric information and intelligent navigation behaviors.

However, planning optimally using geometric information alone is a well understood

problem. In this thesis, we realize that we can use geometric information to generate

optimal behaviors in an environment while simultaneously collecting non-geometric

information. After navigation terminates, we can correlate non-geometric information

to optimal geometric navigation behaviors. However, in order to correlate optimal ge-

ometric trajectories and non-geometric information, we need to define non-geometric

information relative to a metric coordinate frame. In this section, we review two

types of non-geometric information – object-level maps and dense perceptual maps –

that can be metrically aligned.

Object-Level Maps

One approach to storing non-geometric information in a metric coordinate frame is

object level mapping; this approach is particularly useful when objects in an environ-

47

ment inform intelligent navigation behaviors. For example, consider the scenario in

Figure 2-2a, where a robot (green circle) attempts to navigate in a partially known

environment to reach a goal in an adjacent room (red circle). Doors are shown in

yellow, windows in blue, and walls in dark gray. The robot has mapped the white

portions of the world; all other areas are unmapped (light gray overlay). Without

object-level information, the robot will greedily attempt to navigate through the wall

to the goal (red dashed line). However, if the robot is equipped with an object-based

reasoning system and sees a door, it can recognize that rooms are likely connected

via hallways, and that doors are ways to exit rooms to get to hallways (green dashed

line), independent of the partially mapped dense geometry of the room. Additionally,

consider a robot attempting to exit a building (Figure 2-2)b; if the robot has access

to an object-based reasoning system and sees a door with an exit sign, it can exit

the building through the door (green dashed line), instead of greedily exploring a

room in an attempt to minimize the geometric distance to the goal (red dashed line).

However, to enable this behavior, the robot must have knowledge of the locations of

the doors in the environment.

Fortunately, a number of object-level mapping systems have been proposed. SLAM++

initially demonstrated online 6-DOF object localization and mapping using known

CAD models of objects [76]; since then, a variety of CAD-based object-level SLAM

systems have been proposed [30, 31]. For applications where object CAD models

are not available, or where CAD-level detail is not required for successful task com-

pletion, such as obstacle avoidance [65], alternative object representations have been

proposed. QuadricSLAM generated object-level maps by using bounding box detec-

tions to represent objects as quadrics using the dual quadric form [63]; ROSHAN

extended this representation by introducing a texture plane and semantic shape prior

to improve quadric initialization for online planning [65].

By representing objects in a compact way, object-level maps have enabled intelli-

gent object-based motion planning. For example, Sünderhauf [85] used graph convo-

lutional networks to learn navigation policies for object search from graphs built by

object-level mapping systems. Baldwin and Newman [6] used a non-parametric model

48

Figure 2-2: Two examples where object-level information can inform navi-
gation in unknown environments. Consider a robot (green circle) attempting to
navigate to a goal (red circle) in a partially mapped environment. Doors are shown in
yellow, windows in blue, and walls in dark grey. The robot’s observed map is shown
by the white region; the grey overlay indicates that the area of the environment
has not been mapped. (a) The robot attempts to navigate to a goal in an adjacent
room. Without object-level information, the robot will greedily attempt to navigate
through the wall to the goal (red dashed line). However, if the robot is equipped
with an object-based reasoning system and sees a door, it can recognize that rooms
are likely connected via hallways, and that doors are ways to exit rooms to get to
hallways (green dashed line), independent of the partially mapped dense geometry
of the room. (b) The robot attempts to navigate to a goal that is outdoors. If the
robot has access to an object-based reasoning pipeline and sees a door with an exit
sign, it can exit the building through the door (green dashed line), instead of greedily
exploring a room in an attempt to minimize the geometric distance to the goal (red
dashed line).

to learn a sampling distribution relative to objects with known positions, including

traffic circles and T-intersections. In Chapter 3, we present Learned Sampling Distri-

butions, a sampling-based motion planning approach that uses optimal trajectories

to learn an informed sampling distribution and cost function from partially-observed

geometric and object-level maps to improve robot navigation outcomes in unknown

environments.

Dense Perceptual Maps

Another approach to storing non-geometric information in a metric coordinate frame

is dense perceptual mapping, a term we use to describe dense representations of im-

plicit non-geometric information (e.g., semantic segmentation, metrically-correlated

49

overhead images); this approach is particularly useful when non-object elements of

the environment inform intelligent navigation behaviors. For example, consider a

robot navigating in an outdoor environment with a forest and a field; we would like

for the robot to infer that paths through the forest are likely to be higher cost than

paths through the field. Some approaches use semantically segmented images to ap-

proximate cost functions for discrete planning from overhead images; Murphy and

Newman (2010) and Murphy and Newman (2012) [61, 62] learned a Gaussian Pro-

cess to segment an overhead image into terrain classes, then learned spatially-informed

cost functions for each terrain class using additional spatially-informed Gaussian Pro-

cesses. Wigness et al. [92] used one-hot semantically segmented maps as inputs to

a neural network that optimized a maximum entropy inverse reinforcement learning

objective to learn a cost function for navigation in an outdoor environment using a

discrete planner. Everett et al. [20] used semantically segmented overhead images to

learn a cost-to-go heuristic for the last mile delivery task.

While existing approaches to planning using dense perceptual maps have been

successful for short-horizon planning tasks, these approaches were devised using dis-

cretized state models and sampling-based models, which can be inefficient when ap-

plied to long length scale navigation. In Chapter 5, we present Perceptually Informed

Abstractions, a preliminary hierarchical planning approach that learns validity and

cost functions for abstract actions using overhead image data to increase planning

efficiency in long length scale environments.

50

Chapter 3

Learned Sampling Distributions
The research described in this chapter was performed in conjunction with
Katherine Liu.

In this chapter, we present Learned Sampling Distributions, a sampling-based

motion planning (SBMP) algorithm that enables intelligent, efficient robot planning

in unknown environments. We discuss the challenges posed by introducing unknown

space into the formulation for discrete planning over graphs in Equation 2.5, and

motivate the use of hybrid geometric and semantic information to improve sampling

efficiency in these environments. We describe a method for learning sampling dis-

tributions from example optimal trajectories in known environments, and formalize

the optimization over sampling distributions as the learning of network weights in a

convolutional neural network.

3.1 Optimal Planning in Unknown Environments

In Section 2.3.2, we defined the optimal robot motion planning problem over graphs

𝐺 as a minimization of a cost function over all possible robot trajectories 𝐶(𝒯),

subject to validity constraints; specifically, we required each vertex 𝑣 and edge 𝑒 to

be valid, 𝑓𝑣(𝑣) = 1 ∀𝑣 ∈ 𝑉 and 𝑓𝑒(𝑒) = 1 ∀𝑒 ∈ 𝐸. However, in environments where

dense geometry is not known, the validity of each vertex and edge cannot be checked

directly, and additional information is needed to generate graphs that are likely to

51

contain valid, low cost trajectories to solve the optimization in Equation 2.5.

In Section 2.3.3, we motivated the use of sampling-based methods for efficient

graph construction. As discussed in the section, there are three steps in the sampling-

based motion planning process:

1. Sample Vertices: Randomly draw states 𝑥, defined over the configuration

space 𝒳 , to represent as candidate vertices 𝑣 from a sampling distribution,

Φ(𝑥; Γ) where Γ are optional additional inputs to the distribution. Add valid

vertices to the planning graph.

2. Add Edges: Connect vertices in the planning graph using a deterministic edge

addition strategy. Label the edges according to a known cost function 𝐶(𝒯)1.

3. Search Graph: Use a standard graph search algorithm to find the shortest

path in the graph (for example, Hart et al. [29], Dijkstra et al. [17]).

Intuitively, a good choice of sampling distribution is a distribution which generates

graphs that are more likely to contain solutions to the optimization problem in Equa-

tion 2.5. In fully observed environments, a variety of techniques have been developed

to sample efficiently in the presence of environmental structure by using fully-known

occupancy maps, 𝑀*
𝑔 , and the geometric location of the goal, 𝑥𝑔, as conditioning

parameters for the sampling distribution, Γ = {𝑀*
𝑔 , 𝑥𝑔} [96, 13, 7]. However, these

methods cannot be applied in unknown environments, where 𝑀*
𝑔 is either unavailable

or incomplete.

Additionally, in order to generate good paths in unknown environments, an uncert-

ainty-aware cost function must be used to calculate edge costs. In fully-known envi-

ronments, cost functions such as path length are sufficient to ensure good planning

performance, as all edges that are added to the graph necessarily indicate valid traver-

sals of the environment due to collision checking. However, in unknown environments,

where collision checking cannot be performed directly, graph edges do not necessarily

indicate valid traversals in the environment. Because graph edges can be invalid,
1We note that the trajectory cost function can be used to determine the costs of edges in the

graph, as each edge is a valid trajectory.

52

minimum length paths in unknown environments are often overly optimistic about

the traversability of unknown space in the environment, and lead to unsuccessful

plans once additional occupancy information is collected. To avoid over-optimistic

planning behavior, we propose an uncertainty-aware cost function that increases the

probability of selecting a valid trajectory in unknown environments.

3.2 Multimodal Information for Navigation

To sample intelligently in unknown environments, we propose defining a sampling

distribution Φ(𝑥; Γ) parameterized by geometric and semantic information collected

online. While complete geometric information is not available in unknown environ-

ments, a variety of inexpensive sensors can provide an agent with a rich set of geomet-

ric and non-geometric information in real-time. Off-the-shelf depth cameras, like the

Intel Realsense Depth Camera D435i, can provide accurate local depth information

to about 5m and RGB images at visual range [2]. Using open source online occu-

pancy mapping schemes [32] and more recent online metrically-correlated object-level

mapping systems [63, 65], we can generate partially-observed, metrically-correlated

geometric and object-level maps that contain important navigational cues for navigat-

ing in unknown environments in real-time; we call the set of geometric and object-level

maps a hybrid map, ℳ = {𝑀𝑔,𝑀𝑠}. Formally, we parameterize the informed sam-

pling distribution by ℳ, as well as additional task-level contextual information, 𝒞,

Γ = {ℳ, 𝒞}. In practice, 𝒞 contains the geometric location of the goal relative to

the robot, and a boolean indicator that indicates whether the robot’s goal is located

indoors or outdoors. We generate graphs using the resulting sampling distribution,

Φ(𝑥; {ℳ, 𝒞}), (3.1)

to generate candidate solutions to the optimization in Equation 2.5.

Building a graph using an informed sampling distribution is not sufficient to gen-

erate high-quality solutions in unknown environments; the robot must also define a

53

cost function over trajectories that prioritizes trajectories that are likely to lead to the

goal. Unfortunately, common trajectory cost functions, like Euclidean distance, are

insufficient to generate informed trajectories in unknown environments; in the limit

of a graph with infinite samples, a Euclidean distance cost function reverts to greedy

shortest-path behavior which is likely to lead to invalid plans once the underlying

geometry of the environment is observed. Instead, we propose using the sampling

distribution not only to sample the planning graph, but also as a cost function over

graph edges:

𝐶(𝒯) ∝ −log(Φ(𝒯 ; {ℳ, 𝒞}). (3.2)

3.3 Learned Sampling Distributions

In general, determining the exact form of Φ(𝑥; {ℳ, 𝒞}) is a high-dimensional, non-

convex optimization problem that is no easier to solve than the original planning

problem. However, existing work from the planning under uncertainty community

indicates that local environmental cues can inform productive navigation behaviors in

unknown environments [82]. For this reason, we choose to approximate the probability

of sampling an optimal trajectory 𝒯 * with a mapping 𝜑 that depends on the hybrid

map and the contextual information,

Φ(𝒯 *;ℳ𝑖, 𝒞𝑖) ≈ 𝜑(𝒯 *, 𝛼;ℳ𝑖, 𝒞𝑖), (3.3)

where 𝛼 indicates the parameters of the predictive sampling distribution model.

While generating a dataset of example optimal probability distributions is chal-

lenging and often intractable, generating a dataset of optimal trajectories in example

environments is a more tractable endeavor. We propose collecting a dataset of opti-

mal trajectories generated offline using an optimal path planning algorithm in known

maps. Formally, we collect a dataset 𝒟 of 𝑞 example optimal trajectories 𝒯 * and

partial hybrid mapsℳ and context 𝒞,

𝒟 = {(𝒯 *
0 ,ℳ0, 𝒞0), (𝒯 *

1 ,ℳ1, 𝒞1), ..., (𝒯 *
𝑞 ,ℳ𝑞, 𝒞𝑞)}. (3.4)

54

We propose learning a sampling distribution by maximizing the probability that op-

timal trajectory 𝒯 * will be sampled, parameterized by the available map and context

information:

arg max
𝛼

𝑞∏︁
𝑖

Φ(𝒯 *
𝑖 , 𝛼;ℳ𝑖, 𝒞𝑖). (3.5)

For numerical stability, we convert the maximization problem into a minimization of

the negative log-likelihood:

arg min
𝛼

𝑞∑︁
𝑖

−logΦ(𝒯 *
𝑖 , 𝛼;ℳ𝑖, 𝒞𝑖). (3.6)

However, the joint distribution over 𝑉 and 𝐸 is still challenging to optimize, as the

space of all possible sampled graphs is exponentially large. Instead, we approximate

the optimization over sampled graphs as an optimization over graph vertices only:

arg min
𝛼

𝑞∑︁
𝑖

−logΦ(𝑉𝑖, 𝛼;ℳ𝑖, 𝒞𝑖). (3.7)

However, this joint distribution is still expensive to compute. To maintain computa-

tional tractability, we make the assumption that individual vertices in a trajectory

are conditionally independent:

arg min
𝛼

𝑞∑︁
𝑖

−log(

|𝒯𝑖|∏︁
𝑗=0

Φ(𝑣𝑖𝑗 , 𝛼;ℳ𝑖, 𝒞𝑖)). (3.8)

Substituting our neural network approximation for the true probability distribution,

we recover our final optimization:

arg min
𝛼

𝑞∑︁
𝑖

(

|𝒯𝑖|∑︁
𝑗=0

−log𝜑(𝑣𝑖𝑗 , 𝛼;ℳ𝑖, 𝒞𝑖)). (3.9)

In practice, we optimize a scaled version of Equation 3.9 for numerical stability.

55

3.4 Neural Network Model Structure and Optimiza-

tion

While a number of optimization schemes could be used to optimize Equation 3.9, in

this work, we choose to implement 𝜑 using a Convolutional Neural Network (CNN),

due to its known success in representing 2D spatial relationships. Specifically, we

define 𝜑 as a neural network with three distinct parts: 𝜑𝑒𝑛𝑐, which projects the

input hybrid map ℳ into a low-dimensional latent space, 𝜑𝑑𝑒𝑐, which lifts the low-

dimensional latent space into the probability space, and outputs a task-independent

learned sampling distribution, and 𝜑𝑠, a task-specific distribution modifier that takes

the learned latent space and context parameters 𝒞 as input and outputs a task-

specific mask, which is multiplied with the task-independent distribution to produce

an unnormalized task-specific distribution. Finally, the unnormalized distribution

is normalized to generate the final learned sampling distribution, 𝜑. The complete

neural network structure is shown in Figure 3-1.

We representℳ = [𝑀𝑔;𝑀𝑠] as a multi-channel map, where each channel contains

a single mode of information, such that 𝑀𝑔,𝑀𝑠 ∈ R𝑘×𝑘, and ℳ ∈ R𝑘×𝑘×2, where

𝑘 ∈ Z>0. We generate the low-dimensional latent space, 𝑙, by applying the encoding

function 𝜑𝑒𝑛𝑐 toℳ,

𝑙 = 𝜑𝑒𝑛𝑐(𝑥𝑑;ℳ, 𝛼𝑒𝑛𝑐), (3.10)

where 𝑥𝑑 ∈ 𝒳𝑑, 𝒳𝑑 is a discretized form of 𝒳 , and 𝛼𝑒𝑛𝑐 denotes the network weights

for the encoding network.

Next, we apply the decoding function to the learned latent layer, and recover a

task-agnostic probability distribution, which encodes areas of the environment that

are likely to be on optimal paths. For example, this distribution qualitatively places

high probability in areas like hallways and doorways, which are often found on optimal

traversals through office buildings.

𝜑𝑔𝑒𝑛(𝑥𝑑;ℳ, 𝛼{𝑒𝑛𝑐,𝑑𝑒𝑐}) = 𝜑𝑑𝑒𝑐(𝑙;𝛼𝑑𝑒𝑐), (3.11)

56

Figure 3-1: Neural network used to generate learned sampling distributions.
The network uses geometric and semantic information to learn general and task spe-
cific sampling distributions that empower a robot to reason about navigational modes
in unknown space. Layer data indicates, in order, layer size, convolution size, stride
size, and number of filters. Dropouts are not pictured but used for regularization.
The context information is a 3-vector with the first two values proportional the rela-
tive location of the goal, and the third value is a scaled indicator variable indicating
whether the goal is inside or outside.

where 𝛼𝑑𝑒𝑐 denotes the network weights for the decoding network.

However, general navigation strategies are not sufficient to inform optimal task-

based planning; for instance, imagine attempting to navigate between two offices in an

office building. While hallways generally indicate a fast method of traversal through

a building, this information is bidirectional, and does not capture the directionality

necessary to enable efficient planning from one specific office in a building to a second

specific office in a building. Similarly, the utility of exit signs depends on whether or

not a robot needs to exit a building to reach its goal. To enable task-specific planning,

we represent task-specific information in a context parameter, 𝒞 = [𝑥𝑟𝑒𝑙
𝑔 , 𝐼𝑜𝑢𝑡], where

𝑥𝑟𝑒𝑙
𝑔 is the location of the goal in the robot frame, and 𝐼𝑜𝑢𝑡 is a discrete indicator that

indicates whether the goal is indoors or outdoors, such that 𝒞 ∈ R𝑑+1. We account

57

for task-specific behaviors by learning a task-specific distribution modifier 𝜑𝑠, given

the latent layer 𝑙 and parameterized by context 𝒞,

𝜑𝑠(𝑥𝑑;ℳ, 𝒞, 𝛼{𝑒𝑛𝑐,𝑠}) = 𝜑𝑠(𝑙; 𝒞, 𝛼𝑠), (3.12)

where 𝛼𝑠 denotes the network weights for the task-specific distribution modifier net-

work.

To generate an unnormalized task-specific distribution 𝜑𝑢, we multiply the general

distribution 𝜑𝑔𝑒𝑛 with the task-specific distribution 𝜑𝑠:

𝜑𝑢(𝑥𝑑;ℳ, 𝒞, 𝛼{𝑒𝑛𝑐,𝑑𝑒𝑐,𝑠}) = 𝜑𝑔𝑒𝑛(𝑥𝑑;ℳ, 𝛼{𝑒𝑛𝑐,𝑑𝑒𝑐})× 𝜑𝑠(𝑥𝑑;ℳ, 𝒞, 𝛼{𝑒𝑛𝑐,𝑠}). (3.13)

Finally, to generate a proper probability distribution, we apply a softmax layer to

the neural network in Equation 3.13:

𝜑(𝑥𝑑;ℳ, 𝒞, 𝛼{𝑒𝑛𝑐,𝑑𝑒𝑐,𝑠}) = softmax(𝜑𝑢(𝑥𝑑;ℳ, 𝒞, 𝛼{𝑒𝑛𝑐,𝑑𝑒𝑐,𝑠})). (3.14)

In practice, we employ a multi-stage optimization process to optimize 𝜑. First, we

optimize 𝛼𝑒𝑛𝑐 and 𝛼𝑑𝑒𝑐 while holding 𝛼𝑠 constant to learn a task-independent sampling

distribution. Then, we freeze 𝛼𝑒𝑛𝑐 and 𝛼𝑑𝑒𝑐 and optimize 𝛼𝑠 to learn a task-specific

distribution modifier. The network optimizes Equation 3.9 via back-propagation and

stochastic gradient descent (SGD) with a learning rate of 0.0005 and mini-batches

of 500 data points. We provide examples qualitative network outputs in Figures 3-2

and 3-3.

3.5 Online Planning in Unknown Environments

To use the learned distribution online, we first optimize Equation 3.9 offline by ap-

plying SGD to the structure in Equation 3.14. During each timestep of online use,

we generate robot-centered incomplete local geometric and object-level maps of the

environment using a sliding window, then run feed-forward prediction on our pre-

58

Figure 3-2: Overview of model used to learn sampling distribution. Learned
distributions are plotted as filled contour plots (blue is high probability, grey-green is
low probability) overlaid on occupancy maps. In the first half of the network, local
occupancy (a) and semantic (b) maps are passed through a CNN that learns a latent
representation (c) and a context-agnostic distribution (d). A second network takes
the latent layer (c) and contextual information (e) to learn a task-specific modifier,
which is multiplied against the general distribution to obtain a context-dependent
distribution (f).

trained model to recover a normalized probability distribution over the current local,

partially known map. Grid locations outside of the local sliding window are set to the

minimum probability of the predicted window, and the sampling distribution over the

entire map is again re-normalized. Finally, we use a Probabilistic Roadmap (PRM)

[42] to generate a trajectory from the current robot position to the goal, but modify

59

Figure 3-3: The effects of different contextual inputs on the learned sampling
distribution. Occupancy and semantic maps (a-b) are as in Figure 3-2. Without
contextual information, the distribution learns only general navigation heuristics.
After adding contextual information about the goal, the network learns different
navigation strategies. For example, when the goal is to the right and inside, the
exit sign has low probability (c), but when the goal is to the left and outside, the exit
sign has high probability, biasing the planner to exit the building (f). The learned
distribution is able to place probability near the exit sign, despite not having densely
mapped the region.

the planner to sample graph vertices from the learned distribution, as in Equation 3.1,

and label graph edges using the probability distribution as an additive cost function,

as in Equation 3.2. In practice, we sample nodes from the discretized state 𝒳𝑑 for

efficiency, but observe that other sampling methods, such as rejection sampling [54],

could be used to sample from the full state space. Similarly, we assume a discretized

cost function when determining edge labels, but observe that interpolation methods

could be used to generate a cost function over the full state space.

60

Chapter 4

Learned Sampling Distributions

Experiments

In this chapter, we demonstrate Learned Sampling Distributions in simulation and

on a real-world RC car platform planning in real-time. First, we test the approach

in a real-world university floorplan environment in simulation. We demonstrate up

to a 2.7x improvement in ability to find feasible plans when limiting the maximum

allowable number of planning iterations, and demonstrate up to a 16% reduction in

plan cost under some conditions when using our approach as compared to a baseline

planner. We conduct an ablation study to determine the relative importance of the

learned sampling distribution and the learned cost function. We also demonstrate

promising results on a 1/10th scale RC car platform navigating in a building at MIT.

4.1 Experimental Setup

We first demonstrated our approach in simulation in a university floorplan environ-

ment, which was generated from real-world floorplans of buildings on MIT’s campus.

Specifically, we used data from 13 floors of 13 unique buildings, split into a train set

of 10 buildings and a test set of 3 buildings. For each building, we extracted discrete

occupancy maps from floorplan data, and additionally added clutter objects (for ex-

ample, tables and chairs) to rooms in the floorplans, as in Stein et al. [82]. We also

61

extracted the locations of doors from floorplan metadata, and generated object-level

maps of the environment using the available ground truth door locations, clutter loca-

tions, and manually annotated plausible window and exit sign locations. We assumed

a holonomic agent equipped with a planar depth sensor with an 85.2 degree field of

view and 5 meter range, and an RGB vision system with a 69.4 degree field of view

capable of observing objects from 10 meters away1, with no sensor or pose estimation

noise.

4.2 Training Dataset Generation

To generate the training dataset 𝒟, the collection of trajectories, local body-centered

maps, and context, we simulated online planning in the fully known training maps.

Specifically, we assumed that the robot had no knowledge of the environment, and

simulated greedy planning from random starts to random goals using a modified ver-

sion of the Open Motion Planning Library’s Probabilistic Roadmap Method (PRM)

[84]. As the robot planned, it uncovered local occupancy and object-level information

from the environment according to its sensor characteristics using raycasting. At each

timestep, the robot updated its partial maps of the environment, generated a plan

if needed from its current position to the goal using a PRM based on the current

partial occupancy map, and took one step along the plan. Replanning was triggered

if the newly uncovered geometric information rendered any part of the current plan

infeasible, or if 20 steps had been executed without replanning. At approximately

every 50 timesteps, we paused online planning and captured the robot’s local 160 by

160 pixel occupancy and object-level maps (e.g.,ℳ). Then, we randomly generated

new goals for the agent, and used an optimal planner2 and the fully known map of

the environment to determine optimal trajectories from the robot’s current location

1These specifications approximate the performance of the Intel Realsense D345i depth camera
[2].

2We generate optimal trajectories using the A* algorithm [29] over a discretized grid of the
environment, as in practice we find this more efficient than running the sampling-based-motion-
planner until asymptotic convergence to an optimal trajectory, but we note that any planner that
generates optimal trajectories is sufficient for our purpose. Additionally, we enforce soft costs around
obstacles during optimal trajectory generation to encode the desired obstacle clearance behavior.

62

to the new goals. For each new goal, trajectory elements in the robot’s local window,

the local hybrid map, the geometric location of the goal, and whether the goal was

indoors or outdoors was recorded. The data associated with each new goal constitutes

a single training datum, (𝒯 *,ℳ, 𝒞). The network in Equation 3.14 was optimized

using this training data.

4.3 Evaluation Pipeline

To evaluate our approach, we simulated over 4000 planning trials with random starts,

goals, and initial yaws in the three unseen test maps. We varied the number of

planning iterations per query the planner was given to generate a path, denoted as

trials with various 𝑁 , and whether or not the robot’s goal was indoors or outdoors,

denoted as Inside-Inside (II) trials and Inside-Outside (IO) trials. For each trial, we

assumed that the robot had no knowledge of its environment, and simulated planning

until the robot reached the goal, failed to find a valid plan at any timestep, or exceeded

the maximum number of planning iterations, which was set to 10,000. To simulate

planning, a Probabilistic Roadmap (PRM) was generated using a specified sampling

distribution and cost function; different test configurations are discussed in Section

4.4. After generating the PRM graph, A* was used to find the lowest cost trajectory

from the start to the goal in the PRM graph. The robot then executed the trajectory

one step at a time, uncovering geometric and semantic information as it moved; global

replanning was triggered if any of the replanning conditions listed in Section 4.2 were

met.

4.4 Simulation Results

We compared the performance of our approach, which used a learned, context-specific

sampling distribution and learned, context-specific cost function (𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠), to

a baseline approach, which used a uniform sampling distribution and a Euclidean cost

function (𝑈𝑛𝑓 +𝐸𝑢𝑐). Additionally, we performed an ablation study to quantify the

63

importance of the learned, context-specific sampling distribution (𝐿𝑆𝐷𝑠 + 𝐸𝑢𝑐) to

the overall performance of the planner.

4.4.1 Effects of Learned Sampling Distribution and Learned

Cost Function

First, we compared the navigation outcomes of robots navigating using the learned

sampling distribution and cost function (𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠) to the navigation outcomes

of robots navigating using a uniform sampling distribution and Euclidean distance

cost function (𝑈𝑛𝑓 +𝐸𝑢𝑐). In general, we observed that the learned sampling distri-

bution placed high probability in hallways and around exit signs, and the learned cost

function increased the likelihood of the robot selecting paths that moved through high-

probability regions of the environment. A side-by-side comparison of the approaches

for a representative IO trial with 𝑁 = 500 is shown in Figure 4-1. In this example,

the learned agent placed high probability in the hallway and at the exit sign (a-d).

This allowed the learned agent to avoid the overly optimistic navigation behavior of

the baseline agent (f-g), which unnecessary detoured into three small rooms prior to

reaching the goal. The learned agent reached the goal in 1341 planning iterations, as

opposed to the baseline’s 1764 planning iterations, and the final learned trajectory

was 28.6% shorter than the final baseline trajectory.

Additionally, we compared aggregate navigation results for a variety of test sce-

narios. We report metrics to address two questions:

1. How likely were the methods to find a plan in a resource-constrained scenario?

2. For trials where both our method and the baseline method find a plan, how

costly were the learned plans relative to the baseline plans?

We begun by considering the first question, which addresses the probability of our

method finding a valid plan. For each test condition, we calculated the total percent-

age of trials that succeeded, where success was defined by the agent reaching the goal

without failing to find a plan or timing out, which occurred after 10,000 iterations.

64

Figure 4-1: Example intermediate and final trajectories of 𝐿𝑆𝐷𝑠 +𝐿𝑆𝐷𝑠 and
𝑈𝑛𝑓 + 𝐸𝑢𝑐. In (a-d), we show the learned sampling distribution and cost function
overlaid on the robot’s most recent occupancy map (darker blue is higher probability).
The goal was set to the top right corner of the map (red circle), and 𝐼𝑜𝑢𝑡 indicated that
the goal was outdoors. Unlike the baseline (e)-(h), which greedily explored dead-end
rooms in the hopes of reaching the goal, the learned distribution largely encouraged
the planner to follow the hallway (a)-(d). With the contextual information implicit
in the learned sampling distribution, the learned agent traveled 28.6% less distance
than the baseline to reach the goal (i).

Results are shown in Figure 4-2. We demonstrated up to a 2.7x increase in ability

to find a valid plan over the baseline approach; this demonstrates that our method

is more likely to generate random geometric graphs which contain feasible solutions

to the planning problem than the baseline approach. Additionally, we note that our

method demonstrated the largest gains for low values of 𝑁 , which are analogous to

resource-constrained situations. This indicates that the approach has promise for use

with resource-constrained vehicles. Finally, we note that our approach demonstrated

the largest improvements on the more challenging dataset, IO. For example, for the

65

Figure 4-2: Comparison of plan success rates in MIT Floorplan simulations.
A comparison of plan success rates between 𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠 (red x), 𝐿𝑆𝐷𝑠 + 𝐸𝑢𝑐
(green circle), and 𝑈𝑛𝑓 + 𝐸𝑢𝑐 (black triangle) planners, where 𝑁 is the number of
planner iterations per query, which is correlated to the number of samples drawn per
step. 𝐿𝑆𝐷𝑠 +𝐿𝑆𝐷𝑠 and 𝐿𝑆𝐷𝑠 +𝐸𝑢𝑐 found plans more frequently than 𝑈𝑛𝑓 +𝐸𝑢𝑐,
demonstrating that the learned sampling distribution empowers PRM to find plans
more quickly. We observe that the limitations placed on the timesteps per trial may
have inhibited the convergence of the harder IO test set. A small percentage (< 2%)
of trials were marked as failures due to the vehicle coming into collision with the
environment; these trials were removed when calculating success statistics.

𝑁 = 500 case, (𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠) had a 69% success rate, while (𝑈𝑛𝑓 + 𝐸𝑢𝑐) had a

25% success rate.

Second, we compared the quality of plans generated by the two methods when

both methods find plans. We fit a linear regressor with zero intercept to the plan

costs of the two methods for mutually successful trials, and demonstrated up to a

16% and 5% improvement in plan cost when using our learned approach as compared

to the baseline for the II and IO trials, respectively. We visualize plan costs and

linear regressors for all trials in Figure 4-3.

Additionally, we compared the true costs of navigating using our approach and the

baseline approach to the cost of optimal navigation in the environment, 𝐶𝑙/𝐶* and

𝐶𝑏/𝐶*, respectively. Optimal navigation costs were determined by planning using an

optimal planner with soft costs in the fully known map. We report the mean and

standard error of the mean of these quantities, along with additional metrics, in Table

4.1. We note that our method provided modest improvements in average plan cost in

66

Figure 4-3: Comparison of distance traveled in MIT Floorplan simulations.
Scatter plots of distance travelled in simulation units for 𝐿𝑆𝐷𝑠+𝐿𝑆𝐷𝑠 vs. 𝑈𝑛𝑓+𝐸𝑢𝑐
(blue circles) and the slope calculated by linear regression (red line) for various test
conditions, where 𝑁 is the number of planner iterations per query, as in Figure 4-2.
The black dashed line is plotted as a reference for equal cost.

some cases, and did not decrease performance in a statistically significant way for any

of the cases. This indicates that our approach does not negatively effect the cost of

planning for any trials, while significantly increasing the probability that the planner

successfully finds a plan.

Finally, we considered additional representative comparisons of navigation results

using our learned approach as compared to the baseline approach in Figure 4-4. In

many cases (a, b, c, i, j, l), the baseline algorithm optimistically entered rooms and

failed to find plans, while the learned method largely avoided unnecessary rooms and

successfully completed trials. However, as unknown space is inherently uncertain, the

learned agent sometimes entered unnecessary rooms; in many of these cases (b, c,

i, j), the agent was able to quickly exit the room by placing high probability at the

doorway of the room, and successfully completed the trial. In other cases (f, g, h),

while the baseline was able to find a plan, the learned planner avoided unnecessary

exploration and found a lower cost plan than the baseline. Occasionally (d, e), the

67

Dataset II II II II IO IO IO IO
N 100 500 1000 5000 100 500 1000 5000
𝐶 0.84 0.95 0.92 0.90 0.95 1.11 1.01 0.99
||𝐷|| 1500 1162 1016 783 1500 550 705 595
||𝐷𝑚|| 642 819 787 669 140 132 229 315
𝑅2 Score 0.81 0.87 0.77 0.82 0.67 0.34 0.63 0.59
𝐶𝑙/𝐶

* 1.21
±0.01

1.24
±0.01

1.31
±0.02

1.42
±0.03

1.22
±0.03

1.73
±0.16

1.75
±0.09

2.41
±0.09

𝐶𝑏/𝐶
* 1.40

±0.02
1.32
±0.01

1.38
±0.02

1.51
±0.03

1.24
±0.02

1.51
±0.06

1.69
±0.07

2.35
±0.08

Table 4.1: A comparison of plan costs between 𝐿𝑆𝐷𝑠+𝐿𝑆𝐷𝑠 and 𝑈𝑛𝑓+𝐸𝑢𝑐. A
comparison of plan costs between 𝐿𝑆𝐷𝑠 +𝐿𝑆𝐷𝑠 and 𝑈𝑛𝑓 +𝐸𝑢𝑐 when both planners
succeeded, broken out by dataset and planner iterations per query (𝑁), which is
correlated to the number of samples drawn per step. ||𝐷|| and ||𝐷𝑚|| are the total
number of trials run and the number of trials where both planners succeeded. ||𝐷||
varies over 𝑁 due to the time involved in running longer trials. 𝐶 and 𝑅2 score are
the slope and fit score of a linear regression with zero intercept. 𝐶𝑙/𝐶* and 𝐶𝑏/𝐶*

are the mean and standard error of the mean of the trajectory cost divided by the
resolution-optimal trajectory cost for learned and baseline respectively. In the II
dataset, 𝐿𝑆𝐷𝑠 +𝐿𝑆𝐷𝑠 found lower cost plans than 𝑈𝑛𝑓 +𝐸𝑢𝑐, indicating that using
the learned sampling distribution and cost function with our chosen SBMP resulted
in better navigation outcomes.

68

Figure 4-4: Additional comparisons of 𝐿𝑆𝐷𝑠 +𝐿𝑆𝐷𝑠 and 𝑈𝑛𝑓 +𝐸𝑢𝑐. In (a)-(l),
we show example final trajectories of 𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠 (green) and 𝑈𝑛𝑓 + 𝐸𝑢𝑐 (blue)
traversing from start (green circle) to goal (red circle). For example, in (f), both the
learned and baseline approaches mistakenly entered rooms prior to reaching the goal,
but the learned approach avoided more rooms than the baseline approach, resulting
in a lower cost plan. In (i), the baseline approach failed while trying to exit a room,
but the learned approach largely remained in hallways and reached the goal.

learned and baseline planners found similar cost plans; this occurred most commonly

for short plans. Finally, in some uncommon cases (k), the baseline planner found a

shorter plan than the learned planner.

4.4.2 Ablation Study: Learned Sampling Distribution and Eu-

clidean Distance Cost Function

In Section 4.4.1, we demonstrated the benefits of using sampling distributions and cost

functions informed by geometric and object-level information for robot navigation

in unknown environments. By enabling the agent to reason about both where to

place samples and how to weigh edges in unknown environments, we enabled the

69

Dataset II II II II IO IO IO IO
N 100 500 1000 5000 100 500 1000 5000
𝐶 0.82 0.94 0.94 0.94 0.96 1.01 0.97 0.98
||𝐷|| 1500 1500 1500 1500 1500 1313 982 634
||𝐷𝑚|| 627 1078 1182 1297 128 328 295 330
𝑅2 Score 0.73 0.85 0.84 0.89 0.83 0.56 0.54 0.75
𝐶𝑙/𝐶

* 1.20
±0.01

1.26
±0.01

1.33
±0.03

1.44
±0.03

1.18
±0.02

1.46
±0.03

1.67
±0.06

2.30
±0.09

𝐶𝑏/𝐶
* 1.39

±0.02
1.33
±0.01

1.40
±0.03

1.51
±0.03

1.22
±0.02

1.44
±0.03

1.68
±0.05

2.34
±0.09

Table 4.2: A comparison of plan costs between 𝐿𝑆𝐷𝑠 + 𝐸𝑢𝑐 and 𝑈𝑛𝑓 + 𝐸𝑢𝑐.
A comparison of plan costs between 𝐿𝑆𝐷𝑠 +𝐸𝑢𝑐 and 𝑈𝑛𝑓 +𝐸𝑢𝑐 when both planners
succeed, broken out by dataset and planner iterations per query (𝑁). Planner metrics
are as in Table 4.1. In the II dataset, 𝐿𝑆𝐷𝑠 + 𝐸𝑢𝑐 found lower cost plans than
𝑈𝑛𝑓 + 𝐸𝑢𝑐, indicating that using the learned sampling distribution with our chosen
SBMP results in better navigation outcomes, even when a Euclidean distance cost
function is used.

agent to generate informed plans in unknown spaces. However, for the purpose of

informing future research, we also conducted an ablation study, in which we considered

the effects of using the learned sampling distribution with a Euclidean distance cost

function, 𝐿𝑆𝐷𝑠 + 𝐸𝑢𝑐. Complete results for this trial are shown in Table 5.1.

First, we compared the success rate of 𝐿𝑆𝐷𝑠 +𝐸𝑢𝑐 to the success rates of 𝑈𝑛𝑓 +

𝐸𝑢𝑐 and 𝐿𝑆𝐷𝑠 +𝐿𝑆𝐷𝑠. Plan success rates are shown in Figure 4-2; 𝐿𝑆𝐷𝑠 +𝐸𝑢𝑐 was

more likely to find a plan than 𝑈𝑛𝑓 + 𝐸𝑢𝑐, and performed comparably to 𝐿𝑆𝐷𝑠 +

𝐿𝑆𝐷𝑠. This was the expected behavior, as the sampling distribution, not the cost

function, modifies the connectivity of the graph over which we consider solutions to

the optimization in Equation 2.5. Because both planners using the 𝐿𝑆𝐷𝑠 sampling

distribution used geometric and object-level information to inform the structure of

the graphs over which planning occurs, they were more likely to find solutions to the

optimization than the baseline planner.

Next, we compared the relative costs of plans generated using 𝐿𝑆𝐷𝑠 +𝐿𝑆𝐷𝑠 and

𝐿𝑆𝐷𝑠 + 𝐸𝑢𝑐; results are reported in Tables 4.1 and 5.1. When comparing the costs

of plans generated by the two planners to costs of optimal plans in the environment,

70

Figure 4-5: Comparison of replanning rates. Comparison of replanning rates of
𝐿𝑆𝐷𝑠+𝐿𝑆𝐷𝑠 and 𝐿𝑆𝐷𝑠+𝐸𝑢𝑐 for different trials. 𝐿𝑆𝐷𝑠+𝐿𝑆𝐷𝑠 (red) was more likely
to generate plans that remained feasible over time, indicated by the larger number of
plans replanned after 20 timesteps (far right bar of each plot), which occurred due to
a user-enforced timeout. 𝐿𝑆𝐷𝑠 +𝐸𝑢𝑐 was more likely to generate plans that became
infeasible shortly after planning, indicated by a larger percentage of replans occurring
after less than 20 timesteps. Specifically, 𝐿𝑆𝐷𝑠 + 𝐸𝑢𝑐 generated many plans that
were determined invalid after 1-10 timesteps.

assuming soft costs, we demonstrated no significant difference in plan cost between

the two approaches. However, upon further inspection, the two methods exhibited

different planning behaviors; specifically, 𝐿𝑆𝐷𝑠 + 𝐸𝑢𝑐 was more likely to generate

plans that were later observed to be in collision than 𝐿𝑆𝐷𝑠 +𝐿𝑆𝐷𝑠. To quantify this

effect, we analyzed the number of times that replanning was triggered in the planning

loop for the two approaches. Specifically, we compared the replan rates of the two

methods; this metric indicates the number of iterations it took for a plan to become

invalid, once found. We found that 𝐿𝑆𝐷𝑠 +𝐸𝑢𝑐 was more likely than 𝐿𝑆𝐷𝑠 +𝐿𝑆𝐷𝑠

to generate infeasible paths and require replanning prior to the timeout, as shown in

Figure 4-5. This indicates that the learned cost function enables the sampling-based

motion planner to select promising trajectories in unknown environments.

71

4.5 Real-World Navigation Results

We also demonstrated our approach on a 1/10th scale RC car platform completing

a real-world navigation task in a building at MIT. The car was equipped with an

Intel D435i Depth Camera [2], an Intel T265 Tracking Module [3], and an Intel

Nuc i7 [1]. Robot poses were generated using the tracking module. Occupancy

maps were generated online from depth images using OctoMap; object-level maps

were generated online from RGB images with object detections using an object-level

mapping system, Robust Object-based SLAM for High-speed Autonomous Navigation

(ROSHAN) [65]. Object detections for ROSHAN were generated online using an

object detector based on SSD-Mobilenet [33, 52, 4] and fine-tuned to detect windows

and doors using the OpenImages dataset [47]. Exit signs were detected using an HSV

filter. Once 3D object ellipsoids were populated in the 3D object-level map, object

ellipsoids were approximately projected onto the 2D ground plane to generate 2D

object-level maps. We ran our approach on real-world data using the neural network

trained in simulation; no additional fine-tuning was required.

We performed two comparisons of our approach on real-world data. First, we

generated an offline dataset of the robot navigating in a hallway at MIT, then quali-

tatively compared the instantaneous plans generated by 𝐿𝑆𝐷𝑠+𝐿𝑆𝐷𝑠 and 𝑈𝑛𝑓+𝐸𝑢𝑐

on the dataset. Second, we demonstrated our approach in-the-loop for a challeng-

ing navigation task in a building at MIT, and demonstrated improved navigation

performance as compared to the baseline approach.

4.5.1 Offline Comparison of Plans

We qualitatively compared instantaneous plans generated using the 𝐿𝑆𝐷𝑠+𝐿𝑆𝐷𝑠 and

𝑈𝑛𝑓+𝐸𝑢𝑐 planners on an offline dataset of the robot navigating in a hallway at MIT.

The learned distribution placed high probability in the hallway and door regions of the

environment, and the learned planner generated plans that exited through the door

at the end of the hallway, while the baseline approach generated plans that attempted

to exit the hallway by turning around and exiting through an unmapped portion of

72

the wall. This qualitative behavior indicated that the learned sampling distribution

and cost function could be used to inform intelligent navigation behaviors. Example

offline trajectories are shown in Figure 4.5.1.

Figure 4-6: Qualitative comparison of plans on real-world data. Qualitative
comparison of plans generated by 𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠 and 𝑈𝑛𝑓 + 𝐸𝑢𝑐 during an offline
planning trial. 𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠 placed high probability in the hallway and doorway
regions, and generated plans that navigated directly down the hallway towards the
goal, while 𝑈𝑛𝑓 + 𝐸𝑢𝑐 attempted to plan through an unmapped portion of the wall
(t=c). All images are approximately aligned.

4.5.2 Online Comparison of Plans

We tested our approach on a navigation task in a building at MIT, with 𝑁 = 500

and trajectory following using pure pursuit. Despite a slower planning loop (approx-

imately 2 Hz), 𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠 quickly identified doors and an exit sign and planned

down the hallway towards the goal. 𝑈𝑛𝑓 + 𝐸𝑢𝑐, which planned at approximately

6 Hz, exhibited severe thrashing behavior and attempted to greedily plan through a

wall towards the goal. After being manually backed up by an operator to allow for

progress, the baseline planner continued down the hallway in the wrong direction in

an attempt to greedily minimize its distance to the goal, and ultimately failed to find

a valid plan. Example trajectories from the two trials are shown in Figure 4.5.2.

73

Figure 4-7: Qualitative comparison of plans generated during online plan-
ning. Qualitative comparison of plans generated by 𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠 and 𝑈𝑛𝑓 + 𝐸𝑢𝑐
during an online planning trial. An occupancy map of the environment and ap-
proximate start and goal locations are shown in (a). In (b-g), we show onboard
depth images, RGB images with object detections, and current robot plans overlaid
on the robot’s current occupancy map for six timesteps during planning. For the
𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠 cases, we also plot the current learned sampling distribution over the
occupancy map. 𝐿𝑆𝐷𝑠 + 𝐿𝑆𝐷𝑠 (b-d) quickly identified hallways using geometric
structure and semantic information about the locations of doors and exit signs, and
successfully navigated to the goal. 𝑈𝑛𝑓 + 𝐸𝑢𝑐 (e-g) exhibited severe thrashing be-
havior, attempted to navigate through noisy walls, and ultimately navigated into an
adjacent hallway that did not lead to the goal and failed to find a plan.

4.6 Conclusion

In this chapter, we evaluated Learned Sampling Distributions, a novel sampling-based

motion planning algorithm that enables efficient navigation in unknown environments

using hybrid geometric and semantic information. We evaluated the approach in sim-

ulation in a real-world university floorplan environment, and demonstrated that our

approach was up to 2.7 times more likely to find a valid plan than a baseline planner,

without sacrificing plan quality. We also demonstrated promising real-world perfor-

mance on a 1/10th scale RC car planning online in a building at MIT. These results

74

indicate that hybrid geometric and semantic information can be used to improve

navigation results in unknown environments.

However, one of the drawbacks of Learned Sampling Distributions is that the

learned sampler is only able to inform intelligent navigation strategies in a local

window. Beyond the local window, the sampler returns to greedy behavior. In prac-

tice, the size of the local window is limited by the computational cost of calculat-

ing the probability distribution, based on high-resolution geometric and semantic

information, over the high-resolution hybrid maps. In Chapter 5, we discuss a pre-

liminary approach that uses coarse-resolution overhead images to approximate cost

and traversability functions for hierarchical, perceptually informed navigation in long

length scale environments.

75

76

Chapter 5

Perceptually Informed Abstractions

for Efficient Robot Navigation

In this chapter, we present Perceptually Informed Abstractions, a preliminary hi-

erarchical planning approach that enables efficient robot navigation in long length

scale environments. We review the optimal planning problem and motivate the use

of a multi-resolution hierarchical decomposition of the state space, informed by non-

geometric information, to inform efficient hierarchical planning. We model cost and

traversability functions of low resolution plans as distributions conditioned on low

resolution overhead images of the environment, and discuss a method for learning the

parameters of the distributions using a convolutional neural network (CNN).

5.1 Problem Formulation

In section 2.5, we motivated the use of hierarchical models to increase planning

tractability in long length scale environments. Specifically, we noted that abstract

plans p, composed of abstract actions a defined in a reduced model of the planning

problem, and informed by abstract cost and validity functions c(a) and f(a), can be

used to inform the search for a primitive plan in long-length scale environments. The

process of generating a primitive plan informed by an abstract plan is called plan

refinement.

77

While abstractions are a convenient way to reduce the size of the search space for

planning, abstractions are only useful if they capture the properties of the configu-

ration space 𝒳 necessary to inform the search for primitive solutions 𝑝. Intuitively,

good choices of abstract actions, abstract cost functions, and abstract validity func-

tions are low-dimensional and simple to compute, but also capture the properties of

the original planning problem that inform low cost planning behaviors. One common

approach to abstract planning is using the underlying geometry of the state space to

define compact regions of the environment (e.g., the constrained Delaunay triangu-

lation over an occupancy map [90], signal compression using information bottleneck

over an occupancy quadtree [48], convolution and max pooling over a height map

[44]) that can be processed to generate low-dimensional abstract action spaces, ab-

stract cost functions, and abstract validity functions. However, in long length scale

environments, it can be expensive to directly compute an abstraction based on dense

geometry.

5.2 Perceptual Information for Navigation

Defining abstract actions and calculating their properties from dense geometry can

be expensive, but geometry is not the only type of information that can be used to

inform intelligent planning decisions. In this work, we propose using non-geometric

information to inform abstract planning in a hierarchical planner. Specifically, we

would like to take advantage of low resolution overhead imagery, such as satellite

imagery, which has been demonstrated to admit useful navigation cues [79, 61, 62,

20], to inform abstract planning. For example, consider a ground vehicle navigating

outdoors in an environment with a forest and a field (Figure 5-1a). We would like for

the robot to use low resolution satellite imagery to infer that paths through the forest

are likely to be higher cost than paths through the field. Similarly, consider a ground

vehicle navigating in an environment with a lake surrounded by a forest (Figure 5-

1b). We would like for the robot to quickly identify the lake as an untraversable

area, and focus its computation on finding a valid plan through the challenging forest

78

Figure 5-1: Two examples where overhead images can inform intelligent
navigation behaviors. The robot is assumed to be a ground vehicle, and the
robot start and goal locations are shown as green and red circles, respectively. (a)
The robot navigates in an environment with a forest and a field. We would like for
the hierarchical planner to infer that paths through the forest (red dashed line) are
likely to have high cost primitive refinements and select longer abstract plans that
remain in the low cost field (green dashed line). (b) The robot navigates around a
lake surrounded by a forest. We would like for the hierarchical planner to quickly
prune infeasible paths through the water (red dashed line) and focus computation on
finding a valid plan through the challenging forest terrain (green dashed line). Images
collected from Bing Maps [58].

terrain. In this work, we refer to this form of non-geometric reasoning as perceptual

reasoning. We hypothesize that planning using perceptually informed abstractions

can be more efficient than planning using geometrically informed abstractions in some

environments.

To enable perceptual reasoning in long length scale environments, we define an

abstract action space using a simple region-based decomposition technique that does

not rely on the dense geometry of the environment. Then, we learn abstract cost and

validity functions over the abstract action space, conditioned on low-resolution satel-

lite imagery, to encode intelligent navigation behaviors. We use the abstract action

space, cost function, and validity function to generate solutions to the optimization in

Equation 2.6. Finally, we discuss a method for incorporating perceptually informed

abstractions into a hierarchical planning pipeline.

79

5.3 Perceptually Informed Abstractions for Naviga-

tion

Formally, we assume that the configuration space 𝒳 can be decomposed into a finite

set of regions ℛ1. We define an abstract action a𝑖 as the set of primitive actions

that begin in and remain in region ℛ𝑗 until terminating in region ℛ𝑘, similar to

Vega-Brown and Roy [90],

a𝑖 = {𝑝|𝑝 ∈ 𝒳 ; 𝑝𝑡 ∈ ℛ𝑗 ∀𝑡 ∈ {0, 1, ..., 𝑛− 2}; 𝑝𝑛−1 ∈ ℛ𝑘}. (5.1)

To use this definition of abstract actions to generate solutions to the optimization in

Equation 2.6, two properties of the abstract actions must be computed. First, each

action must be classified as valid or invalid. The goal of the abstract validity function

f(a) is to determine if a valid primitive refinement of an abstract action exists for

a particular planning instance. This function allows the planner to quickly prune

regions of the action space that cannot be refined into a valid primitive plan. In

practice, directly determining the validity of an abstract action can require searching

over all possible primitive refinements of the abstract action, which is computationally

expensive. However, we recognize that many environments admit noisy perceptual

cues that can be used to approximate the validity of abstract actions, as in the lake

example in Figure 5-1b. To model these cues, we define the validity of an abstract

action a𝑖 as a draw from a distribution which encodes the probability that an abstract

action is traversable, conditioned on an overhead image,

f(a𝑖;𝑀𝑝, 𝛽𝑖) ∼ 𝛿𝑡𝑟𝑎𝑣(𝛽𝑖;𝑀𝑝), (5.2)

where 𝑀𝑝 is a low resolution overhead image of the environment that has been met-

rically aligned with the region-based decomposition, and 𝛿𝑡𝑟𝑎𝑣 is a probability distri-

1For simplicity of implementation, we assume that regions are defined by decomposing the en-
vironment into low-resolution grid cells, but we note that other decomposition functions could be
used.

80

bution with abstract action-specific parameters 𝛽𝑖. For the overhead image problem,

we will assume f(a) is a traversability function, but note that other forms of action

validity can be encoded.

Second, we define the abstract cost function c(a). The goal of the abstract cost

function is to approximate the costs of primitive refinements of abstract actions.

By modeling the costs of abstract actions, we enable the hierarchical planner to

focus planning on abstract actions that are likely to lead to low-cost primitive plans.

Because the true cost of a primitive action guided by an abstract action is dependent

on the underlying geometry of 𝒳 and the primitive locations where the robot begins

and ends the abstract action, it is not obvious how to calculate the ground truth

cost of an abstract action without conditioning on other trajectory elements and the

ground truth geometry. However, we again recognize that many environments admit

noisy, imperfect perceptual cues that can be used to approximate costs of abstract

actions, as in the forest . To capture the uncertainty in these cues, we model the cost

of each abstract action as a draw from a probability distribution conditioned on an

overhead image,

c(a𝑖;𝑀𝑝, 𝛼𝑖) ∼ 𝛿𝑐𝑜𝑠𝑡(𝛼𝑖;𝑀𝑝), (5.3)

where 𝛿𝑐𝑜𝑠𝑡 is a probability distribution with abstract action-specific parameters 𝛼𝑖.

Under this model, abstract actions with higher costs are more likely to have high cost

primitive refinements, while abstract actions with lower costs are more likely to have

low cost primitive refinements.

While the definitions of f(a) and c(a) can accept any distribution 𝛿𝑡𝑟𝑎𝑣 and 𝛿𝑐𝑜𝑠𝑡

parameterized by a finite number of parameters 𝛽 and 𝛼, in practice, it is expensive

to reason over the space of all possible probability distributions. In the sections

that follow, we choose to model the traversability distribution 𝛿𝑡𝑟𝑎𝑣 as a Bernoulli

distribution with parameter 𝛽 = {𝜋},

f(a𝑖;𝑀𝑝, 𝛽𝑖) ∼ Bern(𝜋𝑖;𝑀𝑝) (5.4)

Additionally, we choose to model the cost distribution 𝛿𝑐𝑜𝑠𝑡 as a Gaussian distribution

81

with parameter 𝛼 = {𝜇} and constant, hand-tuned standard deviation 𝜎2,

c(a𝑖;𝑀𝑝, 𝛼𝑖) ∼ 𝒩 (𝜇𝑖, 𝜎;𝑀𝑝) (5.5)

5.4 Learned Abstract Functions

While we intuitively observe that 𝑀𝑝 contains navigation cues that can inform the

abstract cost and traversability functions in Equations 5.2 and 5.3, it is not obvious

how to define a mapping from a noisy, low-resolution pixel space to the space of

abstract function parameters. However, determining example image-cost function and

image-traversability function value pairs is a more tractable endeavor. We propose

learning the parameters of the functions in Equations 5.2 and 5.3 by maximizing the

probability of recovering image-function value pairs over a training dataset.

Formally, we assume a dataset 𝒟 that includes 𝑧 tuples of overhead images, geo-

metric maps, and optimal primitive trajectories,

𝒟 = {(𝑀0
𝑝 ,𝑀

0
𝑔 , 𝒯 0), (𝑀1

𝑝 ,𝑀
1
𝑔 , 𝒯 1), ..., (𝑀 𝑧

𝑝 ,𝑀
𝑧
𝑔 , 𝒯 𝑧)}. (5.6)

Additionally, we assume that primitive feasibility and cost functions, 𝑓(𝑎) and 𝑐(𝑎),

are known in the training environments.

5.4.1 Learned Traversability

To learn the abstract traversability function, we note that we can label abstract action

a𝑖 as feasible if there exists a primitive plan that traverses through region ℛ𝑗 into

region ℛ𝑘. For each training datum in 𝒟, we generate a ground truth traversability

label 𝑀 𝑠 by enumerating all possible refinements of all possible abstract actions in

𝑀𝑔 and recording the binary traversability label l𝑖, which indicates whether or not a

feasible primitive refinement of each abstract action exists, that is, the label indicates

whether any primitive plan exists that satisfies the constraints of the abstract action

2In future work, we would also like to learn 𝜎.

82

definition in Equation 5.1. We propose learning the abstract traversability function

by maximizing the likelihood of recovering the ground truth traversability of each

abstract action l𝑖 in the training dataset,

arg max
𝛽

|𝒟|−1∑︁
𝜁=0

|𝑀𝑠
𝜁 |∑︁

𝑖=0

𝑝(f(a𝑖;𝑀𝑝, 𝛽𝑖) = l𝑖). (5.7)

For numerical stability, we minimize the negative log likelihood of Equation 5.7,

arg min
𝛽

|𝒟|−1∑︁
𝜁=0

|𝑀𝑠
𝜁 |∑︁

𝑖=0

−log 𝑝(f(a𝑖;𝑀𝑝, 𝛽𝑖) = l𝑖). (5.8)

Plugging in the Bernoulli distribution as the form of 𝑝(f(a𝑖;𝑀𝑝, 𝛽𝑖)), we recover the

binary cross entropy loss function as the objective of the optimization,

arg min
𝜋

|𝒟|−1∑︁
𝜁=0

|𝑀𝑠
𝜁 |∑︁

𝑖=0

−l𝑖log 𝜋𝑖 − (1− l𝑖)log (1− 𝜋𝑖)). (5.9)

5.4.2 Learned Cost Function

To learn the abstract cost function, we note that we can treat the cost of an example

traversal 𝒯 𝑠 from region ℛ𝑗 to ℛ𝑘 as an example draw of the abstract cost function

c(a𝑖;𝑀𝑝, 𝛼𝑖). Formally, we calculate the ground truth cost of a sample abstract action

a𝑠
𝑖 as the sum of consecutive primitive actions that occur in ℛ𝑗 before transitioning

to ℛ𝑘 in example trajectory 𝒯 𝑠,

𝑐(a𝑠
𝑖) =

∑︁
𝑎∈ℱ

𝑐(𝑎), (5.10)

where ℱ is the set of primitive actions 𝑎 in trajectory 𝒯 𝑠 that occur in regionℛ𝑗 before

transitioning to ℛ𝑘, i.e., ℱ = {𝑎|𝑎 ∈ 𝒯 𝑠; 𝑎𝑡 ∈ ℛ𝑗 ∀𝑡 ∈ {𝑙, 𝑙+1, ...,𝑚−1}; 𝑎𝑚 ∈ ℛ𝑘}3.

We propose learning the abstract cost function by maximizing the likelihood of

recovering the costs of sample abstract actions 𝑐(a𝑠
𝑖) in the training dataset,

3For non-convex environments, there may be multiple samples of a particular abstract action in
a given trajectory. In this case, we record both sample actions separately.

83

arg max
𝛼

|𝒟|−1∑︁
𝜁=0

𝑛𝑠−1∑︁
𝑖=0

𝑝(c(a𝑖;𝑀𝑝, 𝛼𝑖) = c(a𝑠
𝑖)). (5.11)

where 𝑛𝑠 is the number of sample abstract actions in sample trajectory 𝒯 𝑠
𝜁 .For nu-

merical stability, we minimize the negative log likelihood of Equation 5.11,

arg min
𝛼

|𝒟|−1∑︁
𝜁=0

𝑛𝑠−1∑︁
𝑖=0

−log 𝑝(c(a𝑖;𝑀𝑝, 𝛼𝑖) = c(a𝑠
𝑖)). (5.12)

Plugging in the Gaussian distribution as the form of c(a), our optimization becomes:

arg min
𝜇

|𝒟|−1∑︁
𝜁=0

𝑛𝑠−1∑︁
𝑖=0

−log (𝒩 (c(a𝑠
𝑖);𝜇𝑖, 𝜎)). (5.13)

5.5 Neural Network Structure and Optimization

We optimize Equations 5.9 and 5.13 using convolutional neural networks, as they

have been demonstrated to successfully encode 2D spatial relationships. The input

to each neural network is the overhead image, 𝑀𝑝, and the output of each network is

a discretized map that encodes the parameters of the abstract cost and traversability

functions. The optimization in Equation 5.9 is constrained to output a valid probabil-

ity of traversability by applying a sigmoid activation function to the network output,

while the optimization in Equation 5.13 is constrained to output a non-negative mean

traversal cost by applying a ReLU activation function to the network output. Both

networks use an autoencoder architecture, and are optimized via back-propagation

and stochastic gradient descent (SGD) with mini-batches.

5.6 Hierarchical Planning using Informed Abstrac-

tions

Finally, we discuss the hierarchical search algorithm used to generate solutions to

the optimization in Equation 2.3. At a high level, the algorithm has two stages.

84

First, an uncertainty-aware discrete planner is used to find a low cost solution p to

the optimization in Equation 2.6 using the perceptually informed abstract actions,

cost function, and traversability function. Once a low cost solution is found, a high-

resolution discrete planner is used to determine the lowest cost primitive refinement

of p in the geometric map (i.e., this finds a solution to a version of Equation 2.3 that

is constrained to be a refinement of p). The true cost of the primitive refinement is

recorded in the abstract planner, and search continues until it is unlikely that a lower

cost plan will be found, or timeout occurs. Pseudocode for the algorithm is presented

in Algorithm 1.

5.6.1 Uncertainty-Aware Planning using Cost Thresholds

To take advantage of the learned cost function, which models the costs of abstract ac-

tions as samples from probability distributions, we need to define an abstract planner

capable of reasoning over actions with uncertain costs. In this work, we use thresholds

to represent the lowest likely cost of an abstract action and the highest likely cost of

an abstract action. Specifically, we define lower and upper thresholds for the costs

of abstract actions as the lower and upper critical values of the corresponding Gaus-

sian distributions. Formally, we define the lower threshold of the cost of an abstract

action,

c𝑙𝑡(a𝑖; 𝛾) = 𝜇𝑖 − 𝛾𝜎, (5.14)

where 𝛾 is a hand-tuned parameter. Intuitively, when 𝛾 is large, the planner considers

a wider range of possible action costs, and it is less likely that the true cost of a plan

will fall below the predicted lower cost threshold (i.e., the planner is risk-averse).

However, risk-averse thresholds cause the planner to search over a larger number of

plans, and are consequentially less efficient. Conversely, when 𝛾 is small, the planner

considers a smaller number of possible action costs, and can be seen as more risky,

but more efficient. Similarly, we define the upper threshold of the cost of an abstract

action,

c𝑢𝑡(a𝑖; 𝛾) = 𝜇𝑖 + 𝛾𝜎. (5.15)

85

In a slight abuse of notation, we overload the threshold functions to simplify the

notation for the thresholds of an abstract plan: c𝑙𝑡(p) =
∑︀|p|−1

𝑡=0 c𝑙𝑡(a𝑡) and c𝑢𝑡(p) =∑︀|p|−1
𝑡=0 c𝑢𝑡(a𝑡). Upper and lower thresholds are used throughout Algorithm 1 to prune

plans that are unlikely to have low cost primitive refinements.

5.6.2 Uncertainty-Aware Planning using Traversability Thresh-

olds

We also use thresholds to take advantage of the learned traversability function,

which models the traversability of abstract actions as Bernoulli distributions. Specif-

ically, we define a traversability threshold 𝜂, which partitions the action space into

traversable and untraversable actions based on the Bernoulli parameter of each ab-

stract action,

f𝑡(a𝑖; 𝜂) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝜋𝑖 > 𝜂

0 otherwise.
(5.16)

Intuitively, low traversability thresholds assume that all actions are more likely to

be traversable, and can be seen as more risk-averse, as it is less likely to prune a

plan that is traversable. However, decreasing the threshold requires the planner to

search over a larger number of plans that are likely to be untraversable, which is less

efficient. Conversely, high traversability thresholds assume that all actions are less

likely to be traversable, and can be seen as more risky, but more efficient. In practice,

we begin planning using a higher traversability threshold, and replan using a reduced

threshold if no valid plan is found in the environment.

5.6.3 The Algorithm

The algorithm is called using the ForwardSearch function, which takes an initial

state, goal region, overhead image, dense geometric map, timeout parameter, and

threshold parameters as input. The algorithm initializes a planning queue, a primitive

plans queue, and an uncertainty-aware visited list, and places the start node on the

86

planning queue and in the visited list (lines 2-4). Then, search begins. While the

queue is not empty, the plan with the lowest lower threshold c𝑙𝑏(p; 𝛾) is selected for

expansion (lines 6, 8). If the cost of the current best primitive plan 𝑝* is lower than

the lower threshold of p, the current plan being expanded, it is unlikely that a plan

on the queue will have a lower cost plan refinement than the current best primitive

plan. The likely lowest cost plan has been found, and the algorithm terminates

(lines 10-11). If the final state in the current plan is the goal state, a valid abstract

plan has been found, and the lowest cost primitive refinement of the abstract plan

is calculated and added to the set of existing primitive plans (lines 12-14, 24-29).

Otherwise, the existing plan is expanded (lines 15, 30-36). Abstract actions are

selected for expansion if they are traversable (line 34) and can be part of a lower cost

plan than existing plans (lines 17-18). Finally, if the queue is empty or the planner

exceeds the maximum number of allowable iterations, the planer exits the planning

loop. Notably, the timeout condition can occur even when a valid primitive plan has

been found; this occurs when there is high uncertainty in the costs of abstract plans,

so no primitive plan is identified as being sufficiently likely to be the lowest cost plan.

In this situation, we return the lowest cost primitive plan found to date (lines 21-23).

87

Algorithm 1 Hierarchical Forward Search using Perceptually Informed Abstractions
1: function ForwardSearch(𝑥𝑠, 𝑥𝑔, 𝑀𝑝, 𝑀𝑔, max-iters)
2: 𝑄← {𝑥𝑠}
3: 𝑝𝑙𝑎𝑛𝑠← ∅
4: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑← ({𝑥𝑠}, 0, 0)
5: 𝑖← 0
6: while |𝑄| > 0 and 𝑖 <max-iters do
7: 𝑖← 𝑖 + 1
8: p← arg min{c𝑙𝑏(p; 𝛾) : p ∈ 𝑄}
9: 𝑝* ← arg min{𝑐(𝑝) : 𝑝 ∈ 𝑝𝑙𝑎𝑛𝑠}

10: if 𝑐(𝑝*) ≤ c𝑙𝑏(p; 𝛾) then
11: return 𝑝*

12: if p.𝑙𝑎𝑠𝑡() = 𝑥𝑔 then
13: 𝑝𝑟𝑒𝑓 ← Refine(𝑥𝑠, 𝑥𝑔, 𝑀𝑔, p)
14: 𝑝𝑙𝑎𝑛𝑠 ← 𝑝𝑙𝑎𝑛𝑠 ∪ 𝑝𝑟𝑒𝑓

15: for all 𝑛 ∈ Expand(p, 𝜂) do
16: p′ = p ∘ 𝑛
17: 𝑝𝑛 ← MinimumUpperBoundVisitation(𝑛)
18: if ¬𝑣𝑖𝑠𝑖𝑡𝑒𝑑(𝑛) or c𝑙𝑏(𝑝′; 𝛾) < c𝑢𝑏(𝑝𝑛; 𝛾) then
19: 𝑄← {𝑝′}
20: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑← (𝑛, c𝑙𝑏(𝑝′; 𝛾), c𝑢𝑏(𝑝′; 𝛾))

21: if |𝑝𝑙𝑎𝑛𝑠| > 0 then
22: 𝑝← arg min{𝑐(𝑝) : 𝑝 ∈ 𝑝𝑙𝑎𝑛𝑠}
23: return p

return ∅
24: function Refine(𝑥𝑠, 𝑥𝑔, 𝑀𝑔, p)
25: 𝑀p

𝑔 ← RestrictMapToRegionsInAbstractPlan(𝑀𝑔,p)
26: 𝑝← PrimitiveForwardSearch (𝑥𝑠, 𝑥𝑔, 𝑀p

𝑔)
27: if ¬𝑝 = ∅ then
28: UpdateBounds(𝑝)
29: return 𝑝

return ∅
30: function Expand(p; 𝜂)
31: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠← ∅
32: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠← AbstractNeighbors(p)
33: for 𝑛 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
34: if f𝑡(𝑛; 𝜂) then
35: UpdateBounds(𝑛)
36: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ∪ 𝑛

return 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

88

Figure 5-2: Overview of hierarchical planning in the toy example environ-
ment. Our approach uses overhead imagery (a) to approximate the costs of abstract
actions in an abstract action space (b). Once abstract plans are found in abstract ac-
tion space, they are used to guide the search for primitive plans in the dense geometric
map (c).

5.7 Preliminary Experiments

In this section, we present preliminary evaluations of the Perceptually Informed Ab-

stractions approach in a toy forest environment. We learned a traversability function

𝑓(a) using the approach in Section 5.4.1 and evaluated the function’s classification ac-

curacy for different thresholds 𝜂. We also analyzed the performance of the hierarchical

planning approach using ground truth abstract traversability and cost functions as

compared to a baseline high-resolution A*-based planner, and discuss the challenges

of using uncertain abstract actions for hierarchical planning.

89

5.7.1 Experimental Setup

We tested our approach in simulation in a toy forest environment. We procedurally

generated a dataset of 300 toy outdoor maps, which were split into a training set of

200 environments and a testing set of 100 environments. An example toy environment

is shown in Figure 5-2. Each environment contained two modes of information – a

high-resolution dense geometric map (832 by 832 pixels, e.g., Figure 5-2c) and a

low-resolution overhead image (208 by 208 pixels, e.g., Figure 5-2b). We assumed

that the resolution of the abstract action space was 1/64 the resolution of the dense

geometric map, and 1/16 the resolution of the overhead image (Figure 5-2a). The

high-resolution dense geometric map was a standard occupancy map with different

geometries to represent traversals in different terrains. For example, a maze geometry

was used to approximate the agent’s navigation behavior when traversing through

trees in a forest or around mud in select sandy areas. The simulated overhead image

was comprised of four noisy terrain classes: water, forest, sand, and pavement. We

assumed that water was untraversable in the dense geometric map, and that all other

terrain types were traversable, although terrain traversal costs were dependent on the

geometric structure of the dense geometric map. We assumed that the agent was

a holonomic ground vehicle with no sensor or pose estimation noise, and that the

objective of the agent was to find minimum length primitive plans while avoiding

obstacles (i.e., using soft costs).

To generate the dataset 𝒟, we simulated 3000 optimal planning trials in the

300 training and testing environments by randomly selecting starts and goals and

running A* in the dense geometric map to generate optimal primitive trajectories4.

We recorded tuples of high-resolution geometric maps, low-resolution overhead im-

ages, and optimal trajectories, then post-processed the dataset to recover cost and

traversability labels for different abstract actions as described in Section 5.4.

4We removed trials where no valid primitive plan was found.

90

5.7.2 Learned Traversability

First, we demonstrated the effectiveness of learning a traversability function for hier-

archical navigation. We optimized an autoencoder-based model to maximize the ob-

jective in Equation 5.9 over the training dataset using the procedure described in Sec-

tion 5.5. Then, we compared the classification accuracy of the learned traversability

function under different thresholds to the ground truth traversability labels over the

test dataset, which comprised of 67,600 individual abstract actions and traversability

labels in 100 distinct environments. Plots of the overall model accuracy, as well as

true positive and negative rates of the model, are shown in Figure 5-3. The model

achieves a maximum accuracy of 99.0% with a traversability threshold of 0.48, and

achieves similar accuracies for a wide range of thresholds, indicating that the ap-

proach is robust to the threshold parameter (Figure 5-3a). Additionally, we consider

the classification accuracy of true positive and true negative samples (Figure 5-3b),

and demonstrate that the network is capable of predicting the traversability values of

both traversable and untraversable regions in the environment. These results indicate

that low-resolution overhead imagery can be used to predict a traversability function

over abstract actions in the toy environment.

5.7.3 Hierarchical Planning using Ground Truth Abstract Func-

tions

Second, we analyzed the hierarchical planning algorithm, independent of the learned

cost and traversability functions, by simulating hierarchical planning using ground

truth abstract function values, which could be computed or approximated in the

toy environment5. We randomly selected start and goal locations in the 100 test

environments, and simulated hierarchical planning until a valid plan was found and

returned, or until the timeout condition of 10,000 hierarchical iterations was met6.

5For this experiment, we calculated ground truth function values using the testing dataset, but
expect that similar ground truth values would be obtained from the training dataset. We assumed
a cost function standard deviation of 1 for all trials, 𝜎 = 1.

6We guaranteed that a valid primitive plan existed for each of the trials.

91

Figure 5-3: Traversability classification accuracy. We analyzed the (a) classifica-
tion accuracy and (b) true positive and true negative rates for the learned traversabil-
ity function for different thresholds 𝜂 over 67,600 individual abstract actions in the test
environment. The network predicts traversability with high accuracy for a wide range
of thresholds, indicating that our approach is capable of learning a robust abstract
traversability function using low-resolution overhead imagery in the toy environment.

We compared the navigation outcomes of the hierarchical planner to the outcomes of

a baseline planner, which used the A* algorithm to search over the dense geometric

map of the toy environment. We evaluated the number of planner nodes expanded,

the planner wallclock time, and the costs of plans generated by the two approaches.

To begin, we compared the navigation outcomes of the two planners when the hi-

erarchical planner assumed no cost function uncertainty (i.e., 𝛾 = 0). We present the

results of the experiment in Figure 5-4, and use linear regressors with zero intercept

to generate aggregate statistics that compare the test metrics for the planners. First,

we consider the total number of plans expanded by the planner. The hierarchical

planning approach expanded 64% fewer plans than the A* algorithm, as determined

by linear regression. However, the hierarchical planning algorithm involved more

overhead computation per plan expanded than the A* algorithm, resulting in signif-

icantly longer planning times (approximately 4.59 times longer, according to linear

regression). Finally, we compared the relative costs of plans generated by the two

approaches. The cost of the baseline A* plan is resolution optimal in the dense

geometric map, and is therefore the lowest cost plan that can be found in the envi-

ronment, given the dense geometric model. Because the hierarchical planner refines

92

Figure 5-4: Comparison of plans generated by the hierarchical and baseline
planners with no abstract cost uncertainty. Each blue circle represents one
planning trial. The red line is a linear regressor, and the black dashed line is an equal
cost reference. While the hierarchical planner explored fewer plans than the baseline
planner (a), the baseline planner generated plans more quickly, partially due to hi-
erarchical planning overhead (b). However, despite considering a smaller number of
planning nodes, the hierarchical planner found plans that were only 10% less efficient
than the optimal plan costs, as determined by linear regression (c), indicating that
overhead imagery can be used to inform intelligent navigation behaviors.

abstract plans using A* over a small subset of the dense geometric map, the goal of

the hierarchical planner is to efficiently recover a plan that is no more expensive than

the plan recovered by the optimal baseline. We demonstrated that, despite expand-

ing fewer possible plans than the A* algorithm, our hierarchical planner recovered

the optimal plan cost in 62% of the trials, and resulted in plans that were only 10%

more expensive on average than the optimal A* plan, as determined by linear regres-

sion. This result indicates that overhead images provide useful navigation cues for

the planner, as the hierarchical algorithm was able to guide efficient planning in the

dense geometric map using only low-resolution overhead image data. In future work,

we intend to optimize the hierarchical planner implementation, and expect to be able

to reduce hierarchical planning wallclock time.

However, we would also like to be able to explicitly consider planning uncertainty

in the hierarchical planner. Reasoning about planning uncertainty will be especially

important when transitioning our approach to real-world environments, where over-

head imagery is more noisy, and where there may be more variation in plan costs

within terrain classes in the environment. To test planning with uncertain cost func-

93

Cost Uncertainty
Scale Factor, 𝛾

0.0 2.0 5.0 10.0 15.0

𝑁̄ 0.36 0.93 14.29 23.78 31.03
𝑅2 Score, 𝑁̄ 0.47 0.11 0.16 0.015 0.10
𝑇 4.59 6.23 57.50 298.75 409.73
𝑅2 Score, 𝑇 0.62 0.19 0.10 0.19 0.28
𝐶 1.10 1.11 1.09 1.08 1.10
𝑅2 Score, 𝐶 0.69 0.72 0.71 0.83 0.69
||𝐷|| 100 100 100 100 100
||𝐷ℎ|| 100 100 99 85 69
||𝐷𝑡𝑜|| 0 0 1 37 60

Table 5.1: A comparison of hierarchical and baseline plan metrics for differ-
ent cost function uncertainties. We compared planning metrics for the hierarchi-
cal and baseline planners when both planners succeeded, broken out by cost function
scaling parameter 𝛾. 𝑁̄ , 𝑇 , and 𝐶 are the slopes of the linear fit regressors for the
number of nodes expanded, planner wallclock time, and resulting plan cost metrics,
respectively. ||𝐷|| is the total number of planning trials considered, and ||𝐷ℎ|| is
the number of trials where the hierarchical planner found a plan (the baseline plan-
ner found a plan for every trial). Finally, ||𝐷𝑡𝑜|| is the number of trials where the
hierarchical planner timed out. We remind the reader that the hierarchical planner
can time out and find a plan, as the hierarchical planner returns a plan, if one has
been found, after timing out. While the hierarchical planner successfully reduces the
number of nodes expanded without significantly compromising plan quality for low
values of 𝛾, the planner is expensive and inefficient for large values of 𝛾. We discuss
mitigations for these inefficiencies in the text.

tions, we compare the performance of the hierarchical and baseline planners for various

values of 𝛾. Complete results of the experiment are given in Table 5.7.3.

In general, we demonstrate that plan cost uncertainty grows quickly in the toy

environment, and for high values of 𝛾, the planner reverts to exhaustive search be-

haviors. In some cases, the hierarchical algorithm inefficiently traverses positive cost

cycles, as loose upper and lower bounds on plan costs can make it challenging to

prune plans with high cost uncertainty7. In other cases, the planner finds a valid

plan relatively quickly, but is unable to ascertain that the plan is likely to be lower

cost than other plans in the environment due to high cost uncertainty. This leads to

inefficient planning behavior, as the planner must refine many uncertain plans before

determining that an existing solution is the likely lowest cost plan. We visually com-

7We note that we cannot simply eliminate cyclic hierarchical plans in the environment, as optimal
primitive behavior can be cyclic in the abstract space.

94

Figure 5-5: Comparison of plans generated by the hierarchical and baseline
planners with abstract cost uncertainty. Each blue circle represents one plan-
ning trial. The red line is a linear regressor, and the black dashed line is an equal cost
reference. The cost uncertainty factor used in this example was 𝛾 = 5. When using a
larger cost uncertainty factor, the hierarchical planner was unable to use the abstract
cost function to prune plans that were unlikely to be low cost, and performed poorly
relative to the baseline for all calculated metrics. In this section, we discuss methods
to mitigate myopic planning behavior caused by cost uncertainty.

pare planner metrics for the hierarchical planner with 𝛾 = 5 and the baseline planner

in Figure 5-5.

While the existing approach is inefficient for abstract cost functions with high cost

uncertainty, the challenges presented here are well-known in the hierarchical planning

under uncertainty literature, and a number of approaches have been proposed to mit-

igate their effects. For example, Vega-Brown and Roy [90] proposed avoiding positive

cost cycles in hierarchical planners by deferring cyclic plans until parent plan nodes

had been further refined, ensuring that no plan contained two identical actions at

the same planning resolution. While this approach relied on the ability to individ-

ually refine abstract actions, which is not currently possible in our approach, it is

possible that a similar approach, which defers the consideration of cyclic plans un-

til other non-cyclic plans have been expanded, could improve hierarchical planning

outcomes in our approach on average. Additionally, a number of authors have pro-

posed strategies that avoid the over-exploration of plans with similar costs by biasing

search to plans that have low cost-to-go values, and terminating when low cost, but

not necessarily optimal, plans are found. This idea was introduced in Weighted A*

95

[71] and applied to hierarchical planners that guarantee primitive plan optimality in

[90]. In future work, we would like to explore the application of these mitigations to

our hierarchical planning approach.

96

Chapter 6

Conclusion

This thesis presented two methods that used learning to incorporate perceptual infor-

mation into classical planning techniques for informed robot navigation in structured

environments. While existing informed planning techniques relied on dense geometric

information to plan intelligently in structured environments, we demonstrated that

perceptual information can be used to inform efficient robot navigation in structured

unknown and long length scale environments. By using learned functions informed by

optimal trajectories to incorporate perceptual information into planning, we avoided

explicitly defining the ways in which perceptual information informs navigation.

In Chapter 3, we presented Learned Sampling Distributions, a novel method for

learning a sampling distribution based on local hybrid geometric and object-level maps

to inform a sampling-based motion planner for navigation in unknown environments.

Our approach used example optimal trajectories to learn a probability distribution

that places high probability in regions of the environment that are likely to be on

optimal paths to the goal, like hallways and doorways in an office environment. In

Chapter 4, we demonstrated up to a 2.7x increase in the probability of finding a plan

using our learned approach as compared to an uninformed baseline planner, and up

to a 16% reduction in plan cost when using our learned approach as compared to an

uninformed planner. We also demonstrated promising results on a 1/10th scale RC

car platform navigating online in a building at MIT.

In Chapter 5, we presented Perceptually Informed Abstractions, a novel method

97

for risk-aware planning at long length scales that learns the properties of abstract

actions for use in a risk-aware hierarchical discrete planner. Our approach proposed

using ground-truth traversability annotations and optimal trajectories to learn the

traversability and cost distributions of abstract actions, respectively, conditioned on

low-resolution overhead images. We proposed combining our learned abstractions

with a risk-aware hierarchical planner to generate perceptually-informed navigation

strategies. We also presented preliminary results for learning a traversability function

from overhead images, demonstrated the hierarchical planning approach using ground

truth cost and traversability functions, and discussed the challenges of hierarchical

planning with uncertain cost functions.

There are a number of interesting extensions to the work presented in this thesis.

First, the Perceptually Informed Abstractions work is in an early phase of develop-

ment, and we would like to demonstrate a more complete set of results, including

learning cost functions and demonstrating improved planning performance using the

hierarchical planner. Additionally, we would like to demonstrate Perceptually In-

formed Abstractions in a more realistic environment, such as the university floorplans

environment. Additional experimentation is required to demonstrate the robustness

of the approach to diverse navigation scenarios in real-world environments.

Another interesting extension to the approaches presented in this thesis would be

the use of different cost functions for planning. While the experiments in this thesis

only consider a total path length objective, neither of the approaches are limited

to using a path length objective. By employing a different cost function to score

optimal trajectories, the approaches may be extended to demonstrating more complex

behaviors. For example, a visibility-aware cost function or communication-aware cost

function could be used to encourage stealthy navigation for surveillance applications.

Finally, the implementations in this thesis are limited to navigation problems that

occur in low-dimensional state spaces; this is because we chose to represent learned

functions as discrete functions defined over the robot’s configuration space. This

representation was chosen to exploit the ability of convolutional neural networks to

represent 2D spatial relationships. However, the methods proposed are not tied to

98

a specific function representation, provided that the representation can be parame-

terized by learnable weights. For example, one interesting extension might be to use

the proposed optimization schemes to learn the statistics of a multivariate Gaussian

mixture model to represent the learned functions which may be more computationally

tractable to define for a high-dimensional state space.

99

100

Bibliography

[1] Intel c○ NUC Kit NUC8i7BEH, 2020. URL
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/
kits/nuc8i7beh.html.

[2] Intel c○ RealSenseTM Depth Camera D435i, 2020. URL
https://www.intelrealsense.com/depth-camera-d435i/.

[3] Intel c○ RealSenseTM Tracking Camera T265, 2020. URL
https://www.intelrealsense.com/tracking-camera-t265/.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available from tensorflow.org.

[5] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Obprm: An
obstacle-based prm for 3d workspaces. In Proc. Int. Workshop on Algorithmic
Foundations of Robotics (WAFR), pages 155–168, 1998.

[6] I. Baldwin and P. Newman. Non-parametric learning for natural plan gener-
ation. In 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4311–4317. IEEE, 2010.

[7] I. Baldwin and P. Newman. Teaching a randomized planner to plan with se-
mantic fields. TAROS 2010, page 20, 2010.

[8] S. Behnke. Local multiresolution path planning. In Robot Soccer World Cup,
pages 332–343. Springer, 2003.

[9] C. H. Bennett. Efficient estimation of free energy differences from monte carlo
data. Journal of Computational Physics, 22(2):245–268, 1976.

101

[10] M. Blaha, C. Vogel, A. Richard, J. D. Wegner, T. Pock, and K. Schindler. Large-
scale semantic 3d reconstruction: an adaptive multi-resolution model for multi-
class volumetric labeling. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3176–3184, 2016.

[11] V. Boor, M. H. Overmars, and A. F. Van Der Stappen. The gaussian sam-
pling strategy for probabilistic roadmap planners. In Proceedings 1999 IEEE
International Conference on Robotics and Automation (Cat. No. 99CH36288C),
volume 2, pages 1018–1023. IEEE, 1999.

[12] B. Burns and O. Brock. Sampling-based motion planning using predictive mod-
els. In Proceedings of the 2005 IEEE international conference on robotics and
automation, pages 3120–3125. IEEE, 2005.

[13] B. Burns and O. Brock. Toward optimal configuration space sampling. In
Robotics: Science and Systems, pages 105–112. Cambridge, USA, 2005.

[14] J. Canny. The complexity of robot motion planning. MIT press, 1988.

[15] W. G. Chase. Spatial representations of taxi drivers. In The acquisition of
symbolic skills, pages 391–405. Springer, 1983.

[16] M. Costandi. How do brain cells tell us where we’re going: New findings provide
a more complex profile of the brain’s “internal gps". Scientific American. URL
https://www.scientificamerican.com/article/how-do-brain-cells-tell
-us-where-were-going/.

[17] E. W. Dijkstra et al. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[18] S. L. Epstein. Navigation, cognitive spatial models, and the mind. In 2017
AAAI Fall Symposium Series, 2017.

[19] S. L. Epstein, A. Aroor, M. Evanusa, E. I. Sklar, and S. Parsons. Learning spa-
tial models for navigation. In International Conference on Spatial Information
Theory, pages 403–425. Springer, 2015.

[20] M. Everett, J. Miller, and J. P. How. Planning beyond the sensing horizon
using a learned context. arXiv preprint arXiv:1908.09171, 2019.

[21] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208,
1971.

[22] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of an admissible el-
lipsoidal heuristic. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2997–3004. IEEE, 2014.

102

[23] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Batch informed trees (bit*):
Sampling-based optimal planning via the heuristically guided search of implicit
random geometric graphs. In 2015 IEEE international conference on robotics
and automation (ICRA), pages 3067–3074. IEEE, 2015.

[24] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa. Batch informed trees (bit*):
Informed asymptotically optimal anytime search. The International Journal of
Robotics Research, 39(5):543–567, 2020.

[25] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the
kitti vision benchmark suite. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[26] A. V. Goldberg. Point-to-point shortest path algorithms with preprocessing. In
International Conference on Current Trends in Theory and Practice of Com-
puter Science, pages 88–102. Springer, 2007.

[27] K. Grant and D. Mould. Lpi: Approximating shortest paths using landmarks.
In Workshop on Artificial Intelligence in Games, page 45, 2008.

[28] L. J. Guibas, C. Holleman, and L. E. Kavraki. A probabilistic roadmap planner
for flexible objects with a workspace medial-axis-based sampling approach. In
Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and
Systems. Human and Environment Friendly Robots with High Intelligence and
Emotional Quotients (Cat. No. 99CH36289), volume 1, pages 254–259, 1999.

[29] P. E. Hart, N. J. Nilsson, and R. Bertram. A formal basis for the heuristic de-
termination of minimum cost paths. In IEEE Transactions on Systems Science
and Cybernetics, pages 100–1072. IEEE, 1968.

[30] T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. GlentBuch, D. Kraft,
B. Drost, J. Vidal, S. Ihrke, X. Zabulis, et al. Bop: Benchmark for 6d ob-
ject pose estimation. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 19–34, 2018.

[31] T. Hodan, D. Barath, and J. Matas. Epos: Estimating 6d pose of objects with
symmetries. In The IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[32] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Autonomous Robots, 2013. doi: 10.1007/s10514-
012-9321-0. URL http://octomap.github.com. Software available at
http://octomap.github.com.

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

103

[34] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow
passages with probabilistic roadmap planners. In 2003 IEEE international con-
ference on robotics and automation (cat. no. 03CH37422), volume 3, pages
4420–4426. IEEE, 2003.

[35] B. Ichter, J. Harrison, and M. Pavone. Learning sampling distributions for
robot motion planning. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 7087–7094. IEEE, 2018.

[36] B. Ichter, E. Schmerling, T.-W. E. Lee, and A. Faust. Learned critical proba-
bilistic roadmaps for robotic motion planning. pages 9535–9541, 2020.

[37] F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan. Rrt-smart: Rapid conver-
gence implementation of rrt towards optimal solution. In 2012 IEEE Interna-
tional Conference on Mechatronics and Automation, pages 1651–1656. IEEE,
2012.

[38] L. Jaillet, J. Cortés, and T. Siméon. Transition-based rrt for path planning
in continuous cost spaces. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2145–2150. IEEE, 2008.

[39] L. Janson, E. Schmerling, A. Clark, and M. Pavone. Fast marching tree: A
fast marching sampling-based method for optimal motion planning in many
dimensions. The International journal of robotics research, 34(7):883–921, 2015.

[40] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical planning in the now. In
Workshops at the Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[41] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion
planning. The international journal of robotics research, 30(7):846–894, 2011.

[42] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
transactions on Robotics and Automation, 12(4):566–580, 1996.

[43] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
In Autonomous robot vehicles, pages 396–404. Springer, 1986.

[44] T. Klamt and S. Behnke. Towards learning abstract representations for loco-
motion planning in high-dimensional state spaces. In 2019 International Con-
ference on Robotics and Automation (ICRA), pages 922–928. IEEE, 2019.

[45] R. A. Knepper and M. T. Mason. Real-time informed path sampling for motion
planning search. The International Journal of Robotics Research, 31(11):1231–
1250, 2012.

104

[46] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. From skills to symbols:
Learning symbolic representations for abstract high-level planning. Journal of
Artificial Intelligence Research, 61:215–289, 2018.

[47] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Ka-
mali, S. Popov, M. Malloci, T. Duerig, et al. The open images dataset v4:
Unified image classification, object detection, and visual relationship detection
at scale. arXiv preprint arXiv:1811.00982, 2018.

[48] D. T. Larsson, D. Maity, and P. Tsiotras. Q-search trees: An information-
theoretic approach towards hierarchical abstractions for agents with computa-
tional limitations. arXiv preprint arXiv:1910.00063, 2019.

[49] D. T. Larsson, D. Maity, and P. Tsiotras. An information-theoretic approach
for path planning in agents with computational constraints. arXiv preprint
arXiv:2005.09611, 2020.

[50] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning.
1998.

[51] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[52] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg. SSD: Single shot multibox detector. In European conference on computer
vision, pages 21–37. Springer, 2016.

[53] T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-free
paths among polyhedral obstacles. Communications of the ACM, 22(10):560–
570, 1979.

[54] D. J. C. MacKay. Information Theory, Inference Learning Algorithms. Cam-
bridge University Press, USA, 2002. ISBN 0521642981.

[55] B. Marthi, S. J. Russell, and J. A. Wolfe. Angelic semantics for high-level
actions. 2007.

[56] B. Marthi, S. Russell, J. Wolfe, et al. Angelic hierarchical planning: Optimal
and online algorithms (revised). 2009.

[57] M. C. Martin and H. P. Moravec. Robot evidence grids. Technical report,
Carnegie-Mellon Univ Pittsburgh Pa Robotics Inst, 1996.

[58] Microsoft. Bing Maps, 2020 (accessed August 8, 2020). URL
https://www.bing.com/maps.

[59] D. Molina, K. Kumar, and S. Srivastava. Learn and link: Learning critical
regions for efficient planning. pages 10605–10611, 2020.

105

[60] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: an open-source SLAM system
for monocular, stereo and RGB-D cameras. IEEE Transactions on Robotics, 33
(5):1255–1262, 2017. doi: 10.1109/TRO.2017.2705103.

[61] L. Murphy and P. Newman. Planning most-likely paths from overhead imagery.
In 2010 IEEE International Conference on Robotics and Automation, pages
3059–3064. IEEE, 2010.

[62] L. Murphy and P. Newman. Risky planning on probabilistic costmaps for path
planning in outdoor environments. IEEE Transactions on Robotics, 29(2):445–
457, 2012.

[63] L. Nicholson, M. Milford, and N. Sünderhauf. Quadricslam: Dual quadrics
from object detections as landmarks in object-oriented slam. IEEE Robotics
and Automation Letters, 4(1):1–8, 2019.

[64] M. Nieuwenhuisen, D. Droeschel, M. Beul, and S. Behnke. Obstacle detection
and navigation planning for autonomous micro aerial vehicles. In 2014 inter-
national conference on unmanned aircraft systems (ICUAS), pages 1040–1047.
IEEE, 2014.

[65] K. Ok, K. Liu, K. Frey, J. P. How, and N. Roy. Robust object-based slam
for high-speed autonomous navigation. In 2019 International Conference on
Robotics and Automation (ICRA), pages 669–675. IEEE, 2019.

[66] C. Packham. Study demonstrates how humans navi-
gate through doorways and not into walls, 2017. URL
https://medicalxpress.com/news/2017-04-humans-doorways-walls.html.

[67] D. K. Pai and L.-M. Reissell. Multiresolution rough terrain motion planning.
IEEE Transactions on robotics and automation, 14(1):19–33, 1998.

[68] J. Pearl. Intelligent search strategies for computer problem solving. Addision
Wesley, 1984.

[69] J. Pearl and J. H. Kim. Studies in semi-admissible heuristics. IEEE transactions
on pattern analysis and machine intelligence, (4):392–399, 1982.

[70] M. Pivtoraiko, R. A. Knepper, and A. Kelly. Differentially constrained mobile
robot motion planning in state lattices. Journal of Field Robotics, 26(3):308–
333, 2009.

[71] I. Pohl. Heuristic search viewed as path finding in a graph. Artificial intelligence,
1(3-4):193–204, 1970.

[72] A. Pronobis, F. Riccio, and R. P. Rao. Deep spatial affordance hierarchy:
Spatial knowledge representation for planning in large-scale environments. In
ICAPS 2017 Workshop on Planning and Robotics, June 2017.

106

[73] J. H. Reif. Complexity of the mover’s problem and generalizations. In 20th
Annual Symposium on Foundations of Computer Science (sfcs 1979), pages
421–427. IEEE, 1979.

[74] A. Rosinol, M. Abate, Y. Chang, and L. Carlone. Kimera: an open-source
library for real-time metric-semantic localization and mapping. arXiv preprint
arXiv:1910.02490, 2019.

[75] Y. Roth-Tabak and R. Jain. Building an environment model using depth infor-
mation. Computer, 22(6):85–90, 1989.

[76] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J. Davi-
son. Slam++: Simultaneous localisation and mapping at the level of objects. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1352–1359, 2013.

[77] A. Shkolnik and R. Tedrake. Sample-based planning with volumes in configu-
ration space. arXiv preprint arXiv:1109.3145, 2011.

[78] D. Silver, B. Sofman, N. Vandapel, J. A. Bagnell, and A. Stentz. Experimental
analysis of overhead data processing to support long range navigation. In 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2443–2450. IEEE, 2006.

[79] D. Silver, J. A. Bagnell, and A. Stentz. Learning from demonstration for au-
tonomous navigation in complex unstructured terrain. The International Jour-
nal of Robotics Research, 29(12):1565–1592, 2010.

[80] D. Silver, J. A. Bagnell, and A. Stentz. Active learning from demonstration
for robust autonomous navigation. In 2012 IEEE International Conference on
Robotics and Automation, pages 200–207. IEEE, 2012.

[81] T. Siméon, J.-P. Laumond, and C. Nissoux. Visibility-based probabilistic
roadmaps for motion planning. Advanced Robotics, 14(6):477–493, 2000.

[82] G. J. Stein, C. Bradley, and N. Roy. Learning over subgoals for efficient naviga-
tion of structured, unknown environments. In Conference on Robot Learning,
pages 213–222, 2018.

[83] G. J. Stein, C. Bradley, V. Preston, and N. Roy. Enabling topological plan-
ning with monocular vision. In 2020 International Conference on Robotics and
Automation (ICRA), pages 1667–1673. IEEE, 2020.

[84] I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library.
IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012. doi:
10.1109/MRA.2012.2205651. https://ompl.kavrakilab.org.

107

[85] N. Sünderhauf. Where are the keys?–learning object-centric navigation poli-
cies on semantic maps with graph convolutional networks. arXiv preprint
arXiv:1909.07376, 2019.

[86] O. Takahashi and R. J. Schilling. Motion planning in a plane using generalized
voronoi diagrams. IEEE Transactions on robotics and automation, 5(2):143–
150, 1989.

[87] C. Thorpe and L. Matthies. Path relaxation: Path planning for a mobile robot.
In OCEANS 1984, pages 576–581. IEEE, 1984.

[88] C. Urmson and R. Simmons. Approaches for heuristically biasing rrt growth.
In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003)(Cat. No. 03CH37453), volume 2, pages 1178–1183.
IEEE, 2003.

[89] J. P. Van den Berg and M. H. Overmars. Using workspace information as a guide
to non-uniform sampling in probabilistic roadmap planners. The International
Journal of Robotics Research, 24(12):1055–1071, 2005.

[90] W. Vega-Brown and N. Roy. Admissible abstractions for near-optimal task and
motion planning. In International Joint Conference on Artificial Intelligence,
Stockholm, 2018.

[91] J. Wang, W. Chi, C. Li, C. Wang, and M. Q.-H. Meng. Neural rrt*: Learning-
based optimal path planning. IEEE Transactions on Automation Science and
Engineering, 2020.

[92] M. Wigness, J. G. Rogers, and L. E. Navarro-Serment. Robot navigation from
human demonstration: Learning control behaviors. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 1150–1157. IEEE, 2018.

[93] M. Wulfmeier, P. Ondruska, and I. Posner. Maximum entropy deep inverse
reinforcement learning. arXiv preprint arXiv:1507.04888, 2015.

[94] M. Wulfmeier, D. Z. Wang, and I. Posner. Watch this: Scalable cost-function
learning for path planning in urban environments. In 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 2089–2095.
IEEE, 2016.

[95] H.-Y. Yeh, S. Thomas, D. Eppstein, and N. M. Amato. Uobprm: A uniformly
distributed obstacle-based prm. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2655–2662. IEEE, 2012.

[96] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle. Dynamic-domain rrts:
Efficient exploration by controlling the sampling domain. In Proceedings of the
2005 IEEE international conference on robotics and automation, pages 3856–
3861. IEEE, 2005.

108

[97] C. Zhang, J. Huh, and D. D. Lee. Learning implicit sampling distributions for
motion planning. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3654–3661. IEEE, 2018.

[98] K. Zheng, A. Pronobis, and R. P. Rao. Learning graph-structured sum-product
networks for probabilistic semantic maps. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[99] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy
inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago,
IL, USA, 2008.

[100] M. Zucker, J. Kuffner, and J. A. Bagnell. Adaptive workspace biasing for
sampling-based planners. In 2008 IEEE International Conference on Robotics
and Automation, pages 3757–3762. IEEE, 2008.

[101] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.
Dellin, J. A. Bagnell, and S. S. Srinivasa. Chomp: Covariant hamiltonian opti-
mization for motion planning. The International Journal of Robotics Research,
32(9-10):1164–1193, 2013.

109

